

 BPMN METHOD AND STYLE
S E C O N D E D I T I O N

W I T H BPMN IM P L E M E N T E R’S GU I D E

 Bruce Silver

CODY-CASSIDY PRESS

BPMN Method and Style, Second Edition, with BPMN Implementer’s Guide
(Kindle Textbook)
By Bruce Silver
ISBN 978-0-9823681-1-4

Copyright © 2011, 2017, 2019 by Bruce Silver. All rights reserved. No part of this work
covered by the copyright hereon may be reproduced or used in any form or by any means –
graphic, electronic, or mechanical, including photocopying, scanning, or transcribing –
without written permission of the publisher, except in the case of brief quotations embodied
in critical articles and reviews.

Published by Cody-Cassidy Press, Altadena, CA 95001 USA
Contact
 info@cody-cassidy.com

The author and publisher accept no responsibility or liability for loss or damage occasioned to
any person or property through use of the material, instructions, methods, or ideas contained
herein, or acting or refraining from acting as a result of such use. The author and publisher
disclaim all implied warrantees, including merchantability or fitness for any particular
purpose.

Library of Congress Control Number: 2011918027
Library of Congress Subject Headings
Workflow -- Management.
Process control -- Data processing -- Management.
Business -- Data processing -- Management.
Management information systems.
Reengineering (Management)
Information resources management.
Agile software development.

Cover design by Leyba Associates

2.2

i

 TA B L E O F CO N T E N T S

Preface to the Second Edition ... v

CHANGES SINCE THE FIRST EDITION .. V
STRUCTURE OF THE BOOK ... VIII
BPMN TRAINING .. X
BPMN TOOLS .. X
ACKNOWLEDGMENTS ... XII

Part I: What is BPMN? .. 1
1. BAD BPMN, GOOD BPMN .. 3

THE PARADOX OF BPMN ... 3
METHOD AND STYLE ... 4
THE LONG ROAD TO BPMN 2.0 ... 5
BUSINESS PROCESS MODELING IS MORE THAN BPMN! .. 7

2. HOW DOES A MODEL MEAN? .. 9
BPMN’S HIDDEN CONCEPTUAL FRAMEWORK .. 10
PROCESS LOGIC .. 12
ORCHESTRATION .. 13
BPMN LEVELS AND PROCESS MODELING CONFORMANCE SUBCLASSES .. 15

Part II: Method and Stryle – Level 1 .. 19
3. BPMN BY EXAMPLE.. 19

A SIMPLE ORDER PROCESS ... 19
EXCEPTIONS AND END STATES ... 19
SWIMLANES AND ACTIVITY TYPES ... 20
SUBPROCESSES ... 21
PROCESS LEVELS AND THE HIERARCHICAL STYLE .. 22
PARALLEL SPLIT AND JOIN ... 25

Table of Contents | ii

COLLABORATION AND BLACK-BOX POOLS .. 25
START EVENTS AND THE PROCESS INSTANCE ... 28
THE TOP-LEVEL DIAGRAM .. 30

4. THE LEVEL 1 PALETTE ... 33
ACTIVITY ... 33
TASK .. 34
SUBPROCESS .. 35
CALL ACTIVITY .. 38
GATEWAY ... 39
START EVENT ... 42
END EVENT .. 44
SEQUENCE FLOW .. 45
MESSAGE FLOW .. 46
POOL ... 46
LANE .. 48
DATA OBJECT AND DATA STORE .. 49
DOCUMENTATION, TEXT ANNOTATION, AND GROUP ... 50

5. THE METHOD ... 53
GOALS OF THE METHOD ... 53
HIERARCHICAL TOP-DOWN MODELING ... 54
END STATE .. 55
STEP 1. DETERMINE PROCESS SCOPE .. 56
STEP 2: THE HIGH-LEVEL MAP .. 59
STEP 3: TOP-LEVEL PROCESS DIAGRAM ... 60
STEP 4: CHILD-LEVEL EXPANSION .. 62
STEP 5: ADD MESSAGE FLOWS .. 63
METHOD RECAP ... 67

6. BPMN STYLE .. 69
THE BASIC PRINCIPLE OF BPMN STYLE ... 69
STYLE RULES .. 71
OFFICIAL BPMN 2.0 RULES ... 82

Part III: Method and Style - Level 2 ... 85
7. EVENTS .. 87

EVENT-TRIGGERED BEHAVIOR ... 89
TIMER EVENT ... 91
MESSAGE EVENT .. 95
ERROR EVENT .. 104
OTHER LEVEL 2 EVENTS ... 107
EVENT SUBPROCESS .. 111

8. ITERATION AND INSTANCE ALIGNMENT ... 113
LOOP ACTIVITY ... 113
MULTI-INSTANCE ACTIVITY ... 114
USING REPEATING ACTIVITIES ... 115
USING MULTIPLE POOLS .. 117

Table of Contents | iii

BATCH PROCESSES .. 119
INSTANCE ALIGNMENT ... 120

9. PROCESS SPLITTING AND MERGING ... 123
CONDITIONALLY PARALLEL FLOW ... 123
MERGING SEQUENCE FLOWS .. 125

10. TRANSACTIONS .. 129
ACID TRANSACTIONS .. 129
BUSINESS TRANSACTIONS ... 130
COMPENSATION THROW-CATCH ... 132

11. THE RULES OF BPMN .. 135
SOURCES OF BPMN TRUTH .. 135
BPMN RULES FOR LEVEL 2 PROCESS MODELING .. 136
STYLE RULES FOR LEVEL 2 PROCESS MODELING .. 139
MODEL VALIDATION .. 140

Part IV: BPMN Implementer's Guide - Non-Executable BPMN 143
12. BPMN 2.0 METAMODEL AND SCHEMA .. 145

XSD BASICS ... 147
BPMN SCHEMA FUNDAMENTALS .. 149

13. PROCESS MODELING CONFORMANCE SUBCLASSES .. 153
DESCRIPTIVE SUBCLASS .. 154
ANALYTIC SUBCLASS .. 155
COMMON EXECUTABLE SUBCLASS .. 156

14. BPMN SERIALIZATION BASICS .. 157
DEFINITIONS... 157
DOCUMENTATION AND EXTENSIONELEMENTS ... 160
COLLABORATION ... 160
PROCESS ... 162
EXAMPLE: SIMPLE PROCESS MODEL ... 162
EXAMPLE: SIMPLE COLLABORATION MODEL .. 164
EXAMPLE: SIMPLE IMPORT AND CALL ACTIVITY ... 165

15. SERIALIZING PROCESS ELEMENTS ... 167
FLOWELEMENT AND FLOWNODE .. 167
ACTIVITY.. 167
SUBPROCESS .. 170
GATEWAY .. 172
EVENT ... 173
SEQUENCEFLOW ... 176
LANESET AND LANE ... 178
ARTIFACTS ... 178

16. SERIALIZING DATA FLOW ... 181
NON-EXECUTABLE DATA FLOW ... 181
EXAMPLE: NON-EXECUTABLE DATA FLOW ... 183
MORE ON DATA INPUTS AND DATA OUTPUTS .. 185

Table of Contents | iv

17. THE BPMNDI GRAPHICAL MODEL ... 187
BPMNDI BASICS ... 188
PROCESS LEVELS AND PAGES ... 188
BPMNDIAGRAM .. 189
BPMNPLANE .. 190
BPMNSHAPE .. 190
BPMNEDGE ... 191
BPMNDI EXAMPLES ... 191

18. BPMN-I .. 199
BPMN-I PROFILE SERIALIZATION RULES ... 201

Part V: BPMN Implementer’s Guide – Executable BPMN 215
19. WHAT IS EXECUTABLE BPMN? ... 215

COMMON EXECUTABLE SUBCLASS .. 216
20. VARIABLES AND DATA MAPPING ... 219

ITEMDEFINITION ... 220
MESSAGE... 220
IMPORTING STRUCTURE DEFINITIONS ... 221
EXAMPLE: DATA FLOW WITH IMPORTED ITEM DEFINITIONS .. 221
PROPERTIES AND INSTANCE ATTRIBUTES.. 223
DATA MAPPING ... 223

21. SERVICES, MESSAGES, AND EVENTS ... 229
SERVICES ... 229
MESSAGES .. 229
AUTOMATED TASKS .. 230
EVENTS ... 232

22. HUMAN TASKS ... 235
USERTASK ... 235
PERFORMER ASSIGNMENT .. 235

23. EXECUTABLE BPMN IN PRACTICE ... 239
HANDLING JAVA DATA ... 240
SERVICES AND SERVICE ADAPTERS .. 244
EXAMPLE: BONITA OPEN SOLUTION ... 244

24. ALIGNING EXECUTABLE DESIGN WITH BPMN METHOD AND STYLE 259
END STATE VARIABLES ... 259
GATEWAY CONDITIONS .. 260
MESSAGES .. 260
ERRORS .. 261

Index .. 263
About the Author ... 269

v

 PR E FA C E TO T H E S E C O N D ED I T I O N

BPMN, which stands for Business Process Model and Notation, is a diagramming language
for business process models. It is important not because it is superior in every way to other
process notations, but because it is a multi-vendor standard, maintained by the Object
Management Group (OMG), and widely adopted by modelers and tool vendors alike. This
book is more than a dictionary of BPMN’s shapes and symbols. It offers a unique approach to
understanding and mastering the process modeling standard, based on two fundamental
principles:

• The Method and Style Principle – A given BPMN diagram should have one and only
one interpretation. The process logic should be completely and unambiguously
described by the diagram alone.

• The BPMN-I Principle – A given BPMN diagram should have one and only one XML
serialization. Otherwise model interchange between tools cannot be achieved.

The first principle applies to modelers, the second one to implementers, such as BPMN tool
vendors… but they are closely related. Unfortunately, strict adherence to the BPMN 2.0
specification is insufficient to guarantee either one. Satisfying those principles requires
additional conventions, which I call style rules and BPMN-I rules, respectively. BPMN Method
and Style not only explains the meaning and usage of the important diagram elements but
provides prescriptive guidance, including style rules and BPMN-I rules, for constructing
BPMN models that are clear, complete, consistent, and interchangeable between tools.

Changes since the First Edition
The first edition of the BPMN Method and Style was published in June 2009, at the time of
completion of the BPMN 2.0 “beta” specification. When I began writing the second edition, I
thought that a significant portion of it could be copied and pasted from the original, but that
turned out not to be the case. In fact, the new edition has been rewritten almost entirely. The
central ideas are the same, but the exposition, emphasis, and examples are all new. I have
taught Method and Style to hundreds of students since publication of the first edition, and the
new edition benefits greatly from that experience. It is clearer, more concise, better organized.

The unique approach of the first edition, including segregation of the palette into “levels,” a
prescriptive modeling methodology, and principles of BPMN “style”, have all been carried

vi | Preface

forward in the new edition. The essential goal remains the same as well: BPMN diagrams
that are unambiguous, understandable by others, and complete, fully revealing the process
logic even in the absence of attached documentation.

Both the goal and its associated principles and rules have formed the basis of my BPMN
training since early 2007. The approach rests on three key pillars:

• Focus on the important shapes and symbols. Although BPMN’s critics point to the
complexity of the complete BPMN 2.0 element set to “prove” its unsuitability for
business people, only a fraction of the full set is used in practice. Method and Style
takes a levels-based approach. BPMN Level 1 is a basic working set of shapes almost
entirely familiar from traditional flowcharting. BPMN Level 2 broadens the palette a
bit, most notably by the event and gateway types most commonly used for describing
exception handling in the diagram. Level 2 is still just a fraction of the complete
element set, but few modelers will ever have a need to go beyond the Level 2 palette.1

• A prescriptive methodology, a step-by-step recipe leading from a blank page to a
complete process model that reveals the process logic clearly from the printed
diagram. The goal of the Method is not creativity but structural consistency: Given
the same set of facts about how the process works, any modeler should create (more
or less) the same model structure.

• BPMN style, a set of modeling conventions that make the process logic unambiguous
from the diagram alone. Like spelling and grammar checks in Microsoft Word, style
rule violations can be flagged in a modeling tool.

Method and Style Evolution
While these Method and Style pillars remain intact, the new edition reflects two years’
evolution of both the methodology and style through repeated interaction with students in
my BPMN training. For example, the Method’s High-Level Map has evolved to better align
with business process architecture. The book now clarifies how fundamental BPMN concepts
like process and activity relate to published business process frameworks. Also, BPMN style,
once taught as a list of recommended best practices, is now more effectively presented as a set
of style rules that can be validated in software2. These changes are reflected in the new
edition.

Another change is the evolution of BPMN Level 1. In the original edition it implied not
simply a limited working set of shapes and symbols but a more relaxed attitude toward the

1 Our Level 1 and Level 2 were formally included in the final BPMN 2.0 specification, where they
are called the Descriptive and Analytic Process Modeling Conformance subclasses, respectively.

2 Currently Process Modeler for Visio (www.itp-commerce.com) implements it in the BPMN
editor, and I have created an online tool (www.brsilver.com) that validates serialized BPMN 2.0
models.

Preface | vii

rules of BPMN, more akin to traditional flowcharting. Today I don’t teach it that way, and the
new edition reflects the change. One reason is the availability of automated style rule
validation, mentioned earlier. That makes a huge difference, since even beginners can quickly
learn to avoid style errors. Also, I have come to see that hiding BPMN’s conceptual
foundations from Level 1 modelers makes it more difficult in the end to create a common
language shared between business and IT. Since the shapes and symbols of the Level 1
palette are mostly familiar to business users, it is better to expose BPMN’s foundations early
on. The ultimate goal, remember, is a language that spans the business and technical worlds.

In the new edition, the Level 1 and Level 2 palettes have been adjusted to correspond exactly
with the Descriptive and Analytic subclasses of the final BPMN 2.0 specification. The Level 1
section of the book now covers the entire Descriptive subclass, and the Level 2 section the
entire Analytic subclass.

New BPMN Implementer’s Guide
While the graphical notation of BPMN 2.0 is virtually unchanged since the first edition, OMG’s
Finalization Task Force made several changes to the XML serialization. The XML serialization
is important not only for executable BPMN but for interchange of non-executable models
between BPMN tools. Addition of the Descriptive and Analytic Process Modeling
Conformance subclasses, mentioned previously, was also of great significance. Without them,
BPMN interoperability between tool vendors would be near impossible without side
agreements. Another key addition was a proper XML schema for diagram layout information,
important not only for preserving some semblance of the original layout on model
interchange, but for defining the page structure of the end-to-end model.

While the final specification stabilized the XML structure, BPMN serialization is still poorly
understood by implementers. For that reason, the second edition adds an entirely new BPMN
Implementer’s Guide aimed at BPMN tool vendors and developers. It explains the BPMN 2.0
metamodel, proper serialization of process models, and conventions that promote
interoperability between BPMN tools. As most tool vendors are still in the early stages of
implementing the final BPMN 2.0 specification, the timing is right for such a guide.

Like the Method and Style sections of the book, the BPMN Implementer’s Guide addresses
gaps in the official BPMN 2.0 spec by introducing conventions that act as additional
constraints. In principle, the XML serialization of a BPMN model should be uniquely determined by
the diagram alone. This is similar to the Method and Style principle that the process logic
should be evident from the diagram alone, but it is not exactly the same. While Method and
Style conventions impose constraints on modelers, such as requiring certain labels, model
interoperability imposes constraints on BPMN tool vendors, such as which elements and
attributes should be included or omitted. Remember, a given BPMN Level 1 or Level 2 diagram
should have one and only one XML representation… but the spec allows more than one. Those
constraints, collectively called the BPMN-I Profile, are intended to define an interoperable
format for any non-executable model containing only members of the Analytic subclass of

viii | Preface

BPMN 2.0. And like the rules of Method and Style, BPMN-I Profile constraints can be
expressed as rules that can be validated in a tool3.

Neither the style rules nor the BPMN-I Profile are part of the official BPMN 2.0 standard from
OMG, but both are consistent with its goals of semantic precision, visual clarity, and
interoperability between tools. Just as some Method and Style ideas, such as the Level 1 and
Level 2 palettes, eventually found their way into the official BPMN 2.0 spec, it is my hope that
style rules and BPMN-I Profile rules will eventually be codified in future versions of the
official BPMN standard. But realistically, no revision of BPMN 2.0 is likely to come out before
2013.

Executable BPMN
While BPMN-I is specific to non-executable BPMN, the BPMN Implementer’s Guide also
includes a section on executable BPMN, beginning with what that phrase means in the context
of the BPMN 2.0 standard. We’ll show how process data is represented in the BPMN XML
and how it is mapped to variables, task I/O parameters, gateway conditions, message
payloads, event definitions, service interfaces, and human task assignment rules in
“executable BPMN”. The basic structure has not changed since the first edition of the book,
but the XML schema has changed significantly. The new edition describes the proper
serialization of BPMN 2.0 execution-related details in accordance with the final BPMN 2.0
specification, and relates that to the way these details are defined in real BPMN 2.0-based
process automation tools.

Structure of the Book
Part I, What Is BPMN?, discusses the importance of BPMN to business process management
overall, its similarities to and differences from traditional flowcharting, and what
distinguishes “good BPMN” from “bad BPMN.” It discusses BPMN’s conceptual
foundations, and explains how BPMN’s notions of activity and process relate to business
process architecture.

Part II, Method and Style – Level 1, is a detailed exposition of the Method and Style approach to
process modeling. We start with BPMN by Example, walking the reader through construction
of a complete process model using only a limited working set of BPMN shapes and symbols
familiar from traditional flowcharting – the Level 1 palette. Afterward, the book goes back and
discusses the meaning and proper usage of each of the Level 1 elements.

Then we explain the Method, a cookbook recipe for creating consistent end-to-end BPMN
models that reveal at a glance the meaning of the process instance, the process’s various end
states, and its touchpoints with the external environment: the customer, service providers, and
other internal processes.

3 For more details, see www.bpmnstyle.com

Preface | ix

Following that we discuss BPMN style, the grammar rules of BPMN that make the process
logic clear from the diagram alone and traceable through the model hierarchy. The style
section is patterned after Strunk and White’s The Elements of Style, still a reliable set of
principles for writing effective English prose. Even though that book goes back to Professor
Strunk’s lecture notes of 1919, its continued popularity demonstrates that basic principles of
style can stand the test of time. The book applies similar principles to the creation of BPMN
models, with the goals of clarity, expressiveness, and consistency with BPMN’s precise
technical meaning.

Part III, Method and Style – Level 2, expands the palette of shapes and symbols. The primary
focus is on Events, primarily the “big 3”– Timer, Message, and Error. We will also discuss the
other events in the Analytic subclass, as well as branching and merging with gateways and
conditional sequence flows. We discuss iteration using loop and multi-instance activities and
multi-participant pools, and we’ll see how certain business processes cannot be modeled as a
single BPMN process but require multiple interacting pools. We conclude Part III by
reviewing the rules of BPMN, both the official rules and the style rules, and show how to use
validation to maintain model quality and make the process logic easily traceable.

If you are looking for information about BPMN 2.0 Choreography and Conversation models,
you won’t find it in this book. So far I have seen little interest in these additions to the BPMN
standard, focused on B2B interactions.

Parts IV and V, comprising the BPMN Implementer’s Guide, shift attention from the graphical
notation to the XML serialization. This is primarily of interest to developers and tool vendors,
but business analysts and architects will find it valuable as well. In Part IV, dealing with non-
executable BPMN, we discuss the BPMN 2.0 metamodel and its representation in XML Schema,
with focus on proper XML serialization of process elements in the Descriptive and Analytic
Process Modeling Conformance subclasses, including data flow. We’ll see how the graphics model
connects to the semantic model, and how multi-page hierarchical models are defined. And
we’ll look at how to reference reusable subprocesses and tasks imported from independent
BPMN files, and the importance of the model’s targetNamespace. Part IV also describes the
BPMN-I Profile, a set of conventions intended to make non-executable model interchange
possible. Where the BPMN 2.0 specification allows multiple ways to serialize a given
diagram, BPMN-I tries to limit it to one way.

Part V, Executable BPMN, discusses how execution-related information, particularly process
data, is defined, referenced, and mapped in executable BPMN models. We discuss BPMN
concepts of services, messages, and events in an execution-related context, and we’ll see how
performer assignment is modeled in human tasks.

We conclude with a discussion of executable BPMN in practice, as it is being implemented by
the first wave of BPMN 2.0-compliant BPM Suites, with examples using Bonita Open
Solution. We’ll see how point-click design in the BPMS tool is reflected in the BPMN 2.0 XML
export. And finally, we’ll discuss alignment of executable design with BPMN Method and Style,
with guidance for tool developers on how to provide elements of that alignment out-of-the-
box.

x | Preface

BPMN Training
The book provides many process diagrams, and I encourage readers to reproduce them using
a BPMN tool. It is difficult, if not impossible, to become proficient at BPMN simply from
reading a book. Like any skill, you really learn BPMN only by doing it, working through the
creation of diagrams that clearly express your intended meaning. But this book is just a
reference; it is not a substitute for real BPMN training.

There is an old joke about sex education vs. sex training that I won’t repeat here. But you get
the idea. Training involves practice, exercises and discussion of solutions, why certain ways
work better than others. I provide such training myself, both online and in the classroom,
through several channels4. This book could be used as a reference for that training, or as a
textbook in a college course on BPMN, but by itself it is not training.

BPMN Tools
The simplest BPMN diagrams can be drawn by hand, but BPMN assumes use of a software
tool. The good news is that there are many such tools to choose from, and the meaning of the
diagram does not change from one tool to the next. But even though BPMN is a standard, the
tools are not all equally good. Some are little more than drawing tools. They can produce
diagrams containing the standard shapes and connectors, but they do not “understand” their
meaning. They cannot, for example, validate the model, or save it in XML interchangeable
with another BPMN tool.

Some tools support all of the BPMN shapes and symbols, while others – particularly those
offered as part of a BPM Suite – include just those that the Suite’s process engine can execute.
Tools mostly adhere to the symbols, markers, and semantics specified by the standard, but
some take liberties here and there. Some tools allow you to draw pools and message flows,
while others do not. Some naturally support the hierarchical modeling style, in which
subprocesses are expanded on separate hyperlinked diagrams, while others are geared
toward “flat” process models with inline subprocess expansion. Also, BPMN tools vary
widely in the non-BPMN information they describe, such as problems and goals, KPIs,
organizational roles, and systems.

Prior to version 2.0, the BPMN spec did not even attempt to describe requirements for
“conformance”. As a consequence, many tools claim to support BPMN but really do not. The
BPMN 2.0 spec does spell out requirements for Process Modeling Conformance. The
Descriptive and Analytic subclasses, equivalent to our Level 1 and Level 2 palettes (in fact,
borrowed from my BPMN training!), specify the elements in non-executable models that must
be supported to claim conformance. The BPMN-I Profile, described in Part IV of the book,
provides serialization rules for non-executable models that allow tool vendors to interchange

4 For more information, see www.methodandstyle.com.

Preface | xi

those models automatically. At this writing, no BPMN tool vendor yet claims full
conformance with the BPMN-I Profile, but some are close.

All this is a long way of saying that even though BPMN is a standard, BPMN tools are not all the
same, and your choice of tool may significantly impact your ability to create “good BPMN”
consistently.

The diagrams used in this book were created using Process Modeler for Visio, an add-in to
Microsoft Visio from itp commerce ltd, of Bern, Switzerland.5 This is the tool I primarily use
in my BPMN training and certification. A key reason is it has the style rule validation built in.
Also, it supports the full BPMN 2.0 element set with proper XML serialization and model
export and import, and simplifies hierarchical modeling as recommended by the Method.

A major strength of BPMN is that users enjoy a wide choice of tools. Nevertheless, some
readers will surely find that the BPMN tool they are currently using does not support some of
the shapes, symbols, and patterns described in this book. One possible reason is that the tool
is based on BPMN 1.x, while the book is based on BPMN 2.0. Tool vendors are often loath to
advertise which version of the standard they support, so here is an easy way to tell.

If your tool includes a shape that looks like this

then it is based on BPMN 1.0. That was obsolete in 2008, so if you are serious about process
modeling, I would recommend upgrading your tool.

If your tool can draw a shape that looks like this

or a shape with a black envelope, like this

but not shapes like these

then it is probably based on BPMN 1.2. This is all right for Level 1 modeling, but it doesn’t
support important shapes such as non-interrupting event and data store. More important, it
doesn’t support the formal BPMN metamodel and XML interchange format.

5 www.itp-commerce.com

xii | Preface

The last three shapes above are new in BPMN 2.0, and a tool that supports BPMN 2.0 is best.
If it supports the Analytic subclass, that means it can draw non-interrupting boundary events
(the dashed double ring), Escalation events, and data stores, all useful and part of the Level 2
palette. In the book, we will indicate which shapes and symbols are new in BPMN 2.0. If your
tool does not yet support BPMN 2.0, all is not lost… but you should encourage your tool
vendor to move up to BPMN 2.0 soon!

Acknowledgments
I would like to acknowledge the efforts of two individuals in advancing the standard and the
Method and Style approach since publication of the original edition. Without those efforts,
this book could not have been written.

Robert Shapiro of Process Analytica, as member of the BPMN 2.0 Finalization Task Force in
OMG, succeeded where I could not, getting the Descriptive and Analytic Process Modeling
Conformance subclasses included in the compliance section of the final BPMN 2.0 spec. Not
only does this provide the only practical basis for model interchange between tools, but it
serves as official endorsement of the Level 1 and Level 2 palettes of BPMN Method and Style.

Stephan Fischli of itp commerce, maker of Process Modeler for Visio, has continually added
features to his BPMN tool that embrace and automate the Method and Style approach.
Notable examples include built-in support for style rule validation, proper XML serialization,
and import of global tasks and processes from external Visio files. Good BPMN requires good
tools, and Stephan’s is the best.

I also want to acknowledge the helpful responses of several individuals to my questions on
technical aspects of the BPMN 2.0 specification, including Matthias Kloppmann of IBM, Ralf
Mueller of Oracle, Denis Gagne of Trisotech, and Falko Menge of Camunda.

I wish to thank Charles Souillard, Nicolas Chabanoles, and Aurelien Pupier at BonitaSoft for
providing the executable BPMN 2.0 model used in Chapter 23 and answering my many
questions about it. Thanks also to Carol Leyba of Leyba Associates for great work on the
cover design.

Finally, I would like to recognize those whose efforts will ultimately make this book available
in other languages and formats: Stephan Fischli and his team at itp commerce (German
translation), Miguel Valdes Faura and his team at BonitaSoft (French translation), Brian Reale
and his team at Colosa (Spanish translation), and Declan Chellar for preparation of the Kindle
version. Thanks to all of them for helping spread the word on BPMN Method and Style.

Bruce Silver
October 2011

1

 PA RT I :
WH AT I S BPMN?

3

CHAPTER 1

1. Bad BPMN, Good BPMN

BPMN stands for Business Process Model and Notation. For the vast majority of BPMN users,
the most important part is the N – the graphical notation – a diagramming language for
business process flows. The most important thing about it is that it is a standard, maintained
by the Object Management Group (OMG). That means it is not owned or controlled by a
single tool vendor or consultancy. You pay no fee or royalty to use the intellectual property it
represents. Today, virtually every process modeling tool supports BPMN in some fashion,
even though a few vendors may grumble that their own proprietary notation is better or more
business-friendly.

A key benefit of a process modeling standard is that understanding is not limited to users of a
particular tool. The semantics are defined by the standard, not by each tool. BPMN is an
expressive language, able to describe nuances of process behavior compactly in the diagram.
At the same time, the meaning is precise enough to describe the technical details that control
process execution in an automation engine! Thus BPMN bridges the worlds of business and
IT, a common process language that can be shared between them.

The Paradox of BPMN
BPMN’s popularity begins with its outward familiarity, especially to business people. Its boxes
and arrows, diamonds and swimlanes look a lot like traditional flowcharts, which have been
around for 25 years. And that was by design. But here is the paradox of BPMN. While
outwardly familiar, BPMN’s unique capabilities come from ways in which it differs from
traditional flowcharting.

One difference, as mentioned above, is that modelers may not make up their own meaning for
the standard shapes and symbols. BPMN is based on a formal specification, including a
metamodel and rules of usage. Its expressiveness derives from the extensive variety of
markers, icons, and border styles that precisely refine the meaning of the basic shapes. It has
rules that govern the use of each shape, what may connect to what. Thus you can validate a
BPMN model, and any BPMN tool worth using can do that in one click of the mouse.

4 | Chapter 1. Bad BPMN, Good BPMN

A second key difference from traditional flowcharts is that BPMN can describe event-triggered
behavior. An event is “something that happens” while the process is underway: The customer
calls to change the order; a service level agreement is in danger of being violated; an expected
response does not arrive in time; a system is down. These things happen all the time. If your
model represents the “real” process it needs to say what should happen when those exceptions
occur. BPMN lets you do that, and visualize that behavior in the diagram itself.

Third, in addition to the solid sequence flow connectors depicting flow within a process, BPMN
describes the communications between the process and external entities like the customer,
external service providers, and other internal processes. Those communications are
represented by a dashed connector, called a message flow. The pattern of message flows, called
collaboration, reveals how the process fits in the global environment.

Thus, using BPMN correctly and effectively requires learning the parts of it that are unfamiliar.
It’s not hard, and that is what this book is about. Nevertheless, following the release of
BPMN 2.0 in 2010, we began to hear some people say that understanding BPMN is “too hard
for business people.” Usually the people saying it were tool vendors or consultants wedded
to their own legacy notations.

But let’s concede one point: there is a lot of “bad BPMN” out there, diagrams that are invalid,
incomplete, or ambiguous. But that does not mean that creating “good BPMN” is beyond the
reach of business users. I suspect that if you looked at a sampling of college application
essays you would see a correspondingly high frequency of misused words, grammar errors,
and garbled sentence structure. Should you conclude from that that English is just “too hard
for high school students”? No, a language requires richness in order to express complex ideas.
But you need to teach people how to use it correctly and effectively, and provide tools to help
them do it.

Method and Style
That’s what this book is about. It shows you how to create “good BPMN,” meaning models
that are:

• Correct. The diagram should not violate the rules laid out in the BPMN specification.

• Clear. The process logic should be unambiguous and obvious from the diagram
alone. It should not depend on attached documentation. Note the term process logic
means the logic of proceeding from one task to the next, not the details of how
individual tasks are performed.

• Complete. In addition to the activity flow, the diagram should indicate how the
process starts, all of its significant end states, and its communications with external
entities, including the requester, service providers, and other internal processes.

• Consistent. Given the same set of facts about the process logic, all modelers should
create more or less the same BPMN model, or at least models that are similarly

Chapter 1. Bad BPMN, Good BPMN | 5

structured. Consistency across the organization makes models easier to share and
understand.

The BPMN spec demands only correctness, but this is insufficient for good BPMN. Good
BPMN requires adopting conventions that go beyond the requirements of the specification. I
call those conventions BPMN Method and Style.

The Method I present in the book is a prescriptive recipe for turning a blank page into a
BPMN model that is correct, clear, complete, and consistent. It is less important that you
adopt my Method exactly than you establish some kind of prescriptive process modeling
methodology for use across your organization. Consistent model structure maximizes shared
understanding as well as model reuse across the organization.

The Method and Style approach is top-down and the resulting models have a hierarchical
structure. Style refers to basic principles of composition and element usage that go beyond
the official rules of the spec. I used to teach BPMN style as “best practices,” but I have found
that it is more effective to reduce it to a list of rules that can be validated in the tool, just like the
official BPMN rules.

Model clarity is directly related to the style rules, many of which simply have to do with
labeling. For some reason, beginning modelers are extremely stingy with labels, and the
BPMN spec does not require any labels at all. But when you think about it, all you have in the
diagram to communicate meaning are shapes and labels. In hierarchical models, where
process levels are represented on separate pages, labeling is what makes the process logic
traceable from the top level down to the lowest level of detail.

The Long Road to BPMN 2.0
For most modelers the important part of BPMN is the N, the graphical notation. But most of
the effort in creating BPMN 2.0 involved the M, the model. That means the formal semantics
of the element definitions and their inter-relationships, as defined by a formal metamodel and
its corresponding XML representation. The notation, the shapes and symbols, actually
changed very little from BPMN 1.2 to BPMN 2.0.

One key motivation for the shift in focus in BPMN 2.0 was to provide an official XML
interchange format for process models. A second was the wish on the part of major BPM Suite
vendors – notably IBM, Oracle, and SAP – to make BPMN models executable in a process
engine. Actually, many BPM Suites were already basing executable process design on BPMN
1.x, but they each modeled the execution-related details in their own proprietary way. BPMN
2.0 would standardize the representation of process data, messages, services, task assignment,
and the like, not in the diagram but in the XML underneath.

OMG’s focus on process execution led to a bit of a backlash against BPMN 2.0 from some in
the BPM community, but the fact remains that the vast majority of BPMN 2.0 use is still for
diagramming non-executable processes. BPMN 2.0 adds only a couple important new
graphical elements to the notation: non-interrupting events and data store. But the tension

6 | Chapter 1. Bad BPMN, Good BPMN

between BPMN as a business-friendly diagramming notation and BPMN as an executable
process language has been there from the beginning.

BPMN originated in 2002 as the visual design layer of a new type of “transactional workflow”
system from a consortium called BPMI.org, led by a startup named Intalio. Leveraging the
distributed standards-based architecture of the web and web services, this new type of BPM
would be a radical break from the proprietary workflow systems of the client/server era. One
key difference would be making the process execution language a vendor-independent standard.
As it developed the language, called BPML, BPMI.org reached a peak of 200 members,
essentially all the major software vendors except IBM and Microsoft.

Another difference would be business empowerment. “In a nutshell,” recalls BPMI’s founder
Ismael Ghalimi, “it would allow less-technical people to build transactional applications by
drawing simple flow charts.”6 BPML would not be coded by hand but generated from a
diagram, which would also be standardized: BPMN. Existing process diagramming standards
like UML were rejected as too IT-centric. BPMI demanded something more business-friendly.
Howard Smith and Peter Fingar fleshed out the promise of business-empowerment through
BPMN in a seminal 2002 book, BPM: The Third Wave, which correctly predicted that
empowering business people to manage their own processes was critical to the evolution of
BPM.

BPMI.org produced a spec for BPMN 1.0 in 2004. Ghalimi continues: “Among [the BPMI
members were] very many process modeling tool vendors who loved the idea of a standard
notation for processes, and very many workflow vendors who hated the idea of a standard
language for executing them. The former understood that they could provide a lot of value
around the core process modeling tool. The latter knew all too well that fragmentation of the
market helped preserve the status quo…”

As it turned out, no one had anything to fear from BPML. IBM and Microsoft countered with
BPEL, a slightly different language layered on top of the new web services standard called
WSDL. In an instant those two vendors trumped 200, and BPML was effectively wiped out. In
2005, needing a new home, BPMI.org was absorbed into the Object Management Group,
ironically home of the spurned alternative, UML. OMG formally adopted the BPMN 1.0 spec
in 2006, adding a minor update, BPMN 1.1, in January 2008, and BPMN 1.2, a bug fix, a year
after that.

It’s a familiar cycle in the world of IT standards, one that normally leads to quiet oblivion. By
the end of 2008, however, against all odds, BPMN turned out to be not on the road to oblivion
but approaching a tipping point of mass adoption. The explanation is simple. Smith and
Fingar were right… sort of. Business empowerment is the key to BPM, and BPMN provides
that – not the executable code, but the precise flow logic that code would have to implement.
Even though the BPMN specification made no explicit distinction between its elements that

6 For a firsthand account, see Why All This Matters, Ismael Ghalimi,
http://itredux.com/2008/10/24/why-all-this-matters/

Chapter 1. Bad BPMN, Good BPMN | 7

are part of the non-executable model and those required for executable implementation, it is
pretty obvious which is which. The “model” elements are displayed in the diagram; the
execution-related elements are not.

The BPM Suite vendors simply adopted the modeling parts of BPMN 1.x – the diagram – and
ignored the execution parts. Executable details could be added to the process model, but each
BPMS would do this in its own way. Thus BPMN 1.x – as implemented by the majority of
modeling tool and BPMS vendors – is not by itself executable, although it is incorporated in
many vendor-specific executable design tools. And that suits the vast majority of process
modelers just fine. Few are even thinking about execution in a BPMS, anyway. They are
business analysts and process architects, not developers.

BPMN 1.x failed, however, to deliver on a key promise, interchange between modeling tools.
It’s amazing that BPMN has achieved wide adoption without that, but somehow it was never
a priority at either BPMI.org or OMG. Standardizing the XML serialization, based on a formal
metamodel, would be a key goal of BPMN 2.0.

In fact, OMG originally intended simply to take its own Business Process Definition
Metamodel (BPDM) and rebrand it as BPMN 2.0. It would de-emphasize the graphical
notation and focus on abstract semantics that could be mapped to any process modeling
language. However, that was a mistake. It would not only abandon existing BPMN 1.x users
but did not sit well with IBM, Oracle, and SAP, who needed to bridge the gap between SOA
and business-oriented BPM. They wanted to extend the BPMN 1.2 notation, popular with
business, to include executable design. In the end, their rival proposal carried the day.7

In the world of BPM tools, BPMN 2.0 marks a tipping point. BPMN 1.x adoption was
spearheaded by the small BPMS “pureplay” vendors. With BPMN 2.0, the biggest software
companies in the world are leading the charge. Today any other notation is seen as
“proprietary” or “legacy.” Somehow, against all odds, BPMN has become the important
standard in BPM.

Business Process Modeling Is More Than BPMN!
Business architects and other BPM practitioners never cease to remind me that the activity
flow logic, as defined by BPMN, is only one component of the modeling needed to properly
describe, analyze, transform, and optimize a company’s business processes. I don’t disagree
with this. BPMN really just describes the sequencing of process activities. That encompasses
quite a lot, but admittedly a lot more information is needed to do BPM properly.

So what is missing? I asked Brett Champlin, president of the Association of BPM Professionals
(www.abpmp.org) and a BPM practitioner himself at a major insurance company, what

7 In December 2008, somewhat by accident, I joined the IBM-Oracle-SAP submission team, and
remained active until publication of the beta specification in the summer of 2009.

8 | Chapter 1. Bad BPMN, Good BPMN

additional information should be modeled to support a process manager in an enterprise
BPM program. He gave me a long list, which I have rearranged as follows:

Enterprise or Line of Business
• High-level business context, describing the business’s relationships to Competitors,

Regulators, Suppliers, Business Partners, Customers, Community, etc.
• Strategic Objectives and Performance Metrics
• Controls and Constraints
• Markets, Customers
• Products (goods and services)
• Locations

Operational, Cross-Process
• Value Chains and Process Portfolios
• Operational Goals and Objectives
• Policies
• Performance Metrics and KPIs
• Organizational Structure and Roles.

Process-Specific
• Activity resource requirements
• Revenue and Costs, both activity-based and resource-based
• Job Aids (instructions for human performers)

Technical
• IT Systems
• Services
• Data

Each of these items can be described by one or more models and attachments, linked in some
relationship to the BPMN model. The fact that BPMN itself does not include them is not, in
my view, a deficiency. In fact, a single vendor-neutral standard describing all of these models
and their interrelationships would be nearly impossible to create. A key reason why BPMN is
so widely accepted as a standard is that it does not attempt to do too much.

BPM at the enterprise level requires a suite of tools built around a repository, a database that
maintains the relationships between all of the different models, along with governance and
change impact analysis. So-called Business Process Analysis (BPA) suites link the process model
to models of business rules, organizational roles, strategic goals and problems, and master
data. Enterprise Architecture (EA) suites link the BPMN to technical models and executable
artifacts. Today, many BPA and EA suites are either replacing their legacy process modeling
tools with BPMN or adding BPMN as an alternative format.

9

CHAPTER 2

2. How Does A Model Mean?

A process model is more than a drawing. Its purpose is to convey meaning, specifically the
logic of the activity flow from process start to end. From the diagram alone, the process logic
should be clear and understandable to a business person but semantically precise, as required
by a developer. By process logic, we mean a description of all the paths from a single initial
state of a process instance to each of its possible end states.

The BPMN specification and most books about it focus on classifying the BPMN elements in
isolation, defining the meaning of each shape and symbol. But, as John Ciardi wrote in his
classic, How Does a Poem Mean?, “the language of experience is not the language of
classification.” Effectively communicating the process logic requires understanding how the
elements fit together, not just as isolated words but as sentences, paragraphs, a complete
story. That requires attention to the overall structure of the model, following a consistent set
of conventions, what I call Method and Style. If you do that correctly, the most important
features of the process are obvious at a glance: what the instance represents, how the process
starts, its various possible end states and their corresponding status messages, and its
touchpoints with external entities.

The BPMN diagram is both a visualization and a data entry device for the underlying XML
semantic model. When you draw a diagram, the tool transparently translates each shape into
its corresponding semantic element: a start event, a User task, an end event, etc. In the BPMN
2.0 specification, the BPMN metamodel, element definitions, and associated rules all reference
the semantic elements, not the shapes in the diagram. In fact, BPMN allows a semantic model
without an associated graphical model. That is, the process logic is defined in the XML, but
there is no diagram. However, the converse is not true: In BPMN 2.0, you cannot have a
graphical model without an associated semantic model.

A computer may be able to comprehend complex process logic expressed as pages of XML,
but people cannot. We need the diagrammatic representation to make sense of what is going
on. But here’s the problem: Just a tiny fraction of the information defined by the semantic
model is visible in the diagram: the basic element type, indicated by its shape and associated
icons and markers, and a text label. If we are viewing a multi-page diagram within a BPMN

Chapter 2. How Does a Model Mean? | 10

tool, hyperlinks can indicate certain relationships between the pages, and property sheets can
display various attributes of a selected shape. But we cannot assume that the diagram is
always accessed through the tool. In most cases users view the BPMN diagram as a hard
copy or pdf, in which the hyperlinks and property sheets do not appear.

That means we need to convey as much meaning as possible from the diagram by itself, as it
would appear in printed form, where all we have are shapes and labels. Labels are very
important. A key piece of the Method and Style approach deals with consistent labeling, so
the process logic is not only clear on the page but traceable from page to page in a hierarchical
model.

We don’t want to guess the modeler’s intent. It should be obvious from the diagram alone.
That’s what we mean by “good BPMN,” and fortunately, it is a readily learnable skill.

BPMN’s Hidden Conceptual Framework
While BPMN is widely adopted, few process modelers know how to use it correctly or
effectively. Bad BPMN is the norm rather than the exception. One reason is the BPMN
specification itself. It fails to explain clearly the meaning of BPMN’s most fundamental
concepts, like activity or process. That failure creates problems not only for beginning process
modelers but for experienced business process architects.

What Is an Activity?
Let’s start with activity. An activity in BPMN is an action, a unit of work performed. It is the
only BPMN element that has a performer. But the meaning of a BPMN activity is more specific
than that. A BPMN activity is an action that is performed repeatedly in the course of business.
Each instance of the activity represents the same action (more or less) on a different piece of
work. The modeler needs to have clarity on the meaning of the activity instance, such as an
order, a service request, or a monthly review.

A BPMN activity is a discrete action with a well-defined start and end. Once an instance of the
activity has ended, it’s over, complete. It’s not just lying dormant, ready to suddenly
reawaken and do a bit more if it discovers something wrong. It is possible for the process to
do those things… but in a different activity, or possibly another instance of the same activity.

In the broader realm of BPM architecture, the term “activity” is used more broadly, and this
causes some confusion regarding BPMN. Some “activities” described by BPM architecture do
not fit BPMN’s definition because they are really functions performed continuously, not
discrete actions performed repeatedly. They often have names like Manage X or Monitor Y, and
don’t operate on instances with a well-defined start and end.

Chapter 2. How Does a Model Mean? | 11

What Is a Process?
Similarly, a process in BPMN is a sequence of activities leading from an initial state of the
process instance to some defined end state. The start of a process is marked by a triggering
event, such as receipt of a request. The process model is a map of all the possible paths –
sequences of activities – from that initiating event to any defined end state, success or
exception. Like activity, a process is discrete not continuous. It is performed repeatedly in
the course of business, and has a well-defined start and end. Each instance of the process
follows some path in the process model from start to end.

Like activity, BPMN’s definition of a process is sometimes at odds with the term “process” as
used by BPM or enterprise architects. For example, enterprise BPM often refers to business
process frameworks, such as SCOR, ITIL, or eTOM, that enumerate the major processes and
activities for a particular industry, typically for cross-company benchmarking8. One

organization, called APQC, publishes a cross-industry Process Classification Framework9, a
hierarchy consisting of Categories, Process Groups, Processes, and Activities. Unfortunately,
very few of the processes and activities listed in the PCF match BPMN’s notion of process and
activity. Most are of the Manage X variety, ongoing business functions rather than actions on
discrete instances with well-defined start and end.

For example, below is a brief excerpt from the PCF for the process called Process Expense
Reimbursements10. Here three-digit headings represent processes and four-digit headings
represent activities.

8.6.2 Process expense reimbursements (10757)
8.6.2.1 Establish and communicate expense reimbursement policies and approval limits (10880)
8.6.2.2 Capture and report relevant tax data (10881)
8.6.2.3 Approve reimbursements and advances (10882)
8.6.2.4 Process reimbursements and advances (10883)
8.6.2.5 Manage personal accounts (10884)

Within a process, activity instances need to align with each other and align with the process
instance as well. If we interpret 8.6.2 as the BPMN process of handling employee expense
reports, that is certainly not the case here. The first activity is really two separate BPMN
activities, since establishing the policies and communicating them probably occur at different
times and frequencies. Also, neither one of them is part of this process. The second activity is
also two BPMN activities. Tax data might be captured with each expense report, but
reporting it to the government would be done quarterly or annually. The next two could
possibly be BPMN activities in this process, assuming processing advances and

8 See, for example, Paul Harmon, Business Process Change, 2nd edition, Morgan Kauffman, 2007.

9 http://www.apqc.org/process-classification-framework

10 http://www.apqc.org/knowledge-
base/download/31928/a%3A1%3A%7Bi%3A1%3Bs%3A1%3A%222%22%3B%7D/PCF_Cross%20Ind
ustry_v5%202%200.pdf?destination=node/31928

Chapter 2. How Does a Model Mean? | 12

reimbursements use the same process. The last one is an ongoing function, not a BPMN
activity at all.

From BPMN’s conceptual framework, a better activity list for processing employee expense
reimbursements might be as follows, where an instance of each activity is a single expense
report:

8.6.2 Process expense reimbursements
8.6.2.1 Review expense report and supporting documentation
8.6.2.2 Approve reimbursement
8.6.2.3 Capture tax data
8.6.2.4 Issue payment

My intent here is not to pick on APQC, specifically. The problem is rampant in the literature
of business architecture and enterprise BPM. I have come across situations where a BPM
architecture team has defined a list of major “activities” that are not discrete actions
performed repeatedly on instances with well-defined start and end points, and has then
tasked process modelers with wiring them together to describe end-to-end processes. But it is
impossible.

Process Logic
When a process modeler begins to document an as-is, or current-state, process, the procedure
typically involves meeting with the people directly involved with the process, so-called
subject matter experts. And the SMEs might be inclined to describe the process like this: First
X happens, and then it typically goes to Y, and then finally we do Z. That’s fine. It describes what
usually happens, leading to a successful end state. Or maybe that’s just how it happened in
one recent instance.

But the process model is more than documentation of one instance of the process. It is a
complete map of all the paths from the triggering event to any defined end state. That does
not mean every conceivable possibility, no matter how remote, only those end states and
paths that occur with significant frequency.

So the first questions for the SME should be things like this:

How does the process actually start? What event triggers it? Is there more than one possible
way it could start?

What determines when the process is complete? Are there different end states for the process,
such as one signifying successful completion and others signifying failed or abandoned
attempts?

How does the process get from X to Y? Does the person doing Y somehow just “know” it’s
supposed to happen? You said it “typically” goes to Y, but where else might it go? And why?

Chapter 2. How Does a Model Mean? | 13

How do you know when X is done? Does X always end in the same way? Or besides the
normal end states are there exception end states where you don’t go on to Y? Are there rules
that govern this?

Answers to these questions define the process logic. The process logic defines all possible
sequences of activities from the process’s initiating event to one of its end states. Each activity
is represented in the diagram by a rounded rectangle, and solid arrow connectors called
sequence flows describe the possible flow paths. There may be branch points in the flow, where
an instance could take one path or another based on some condition. There is a diamond
shape in BPMN for that, called a gateway, and the labels on the gateway and its outgoing
connectors show that conditional logic on the process diagram. BPMN also has circle shapes,
called events, that can divert the flow when some exception occurs or some external message
arrives. In fact, all of the process logic in BPMN is composed of just these three primary flow
nodes – activities, gateways, and events – and the sequence flows connecting them. Each end
of a sequence flow must connect to an activity, gateway, or event.

The SME’s first reaction to these questions might be, “Nothing is making the process go from X
to Y. That’s just what happens.” Of course, something is always making it go. The logic is just
hidden, probably inside the head of whoever happens to be doing X for that particular
instance. And there is tremendous value in surfacing that logic, making it explicit in a
diagram that all stakeholders in the process can understand. Without that, you can’t really
manage the process or improve its performance.

Orchestration
BPMN only describes processes in which the process logic – the map of all possible paths
from triggering event to one of the process’s end states – is explicit, defined in advance of the
triggering event. BPMN is a language for specifying that explicit process logic. Every
instance of the process must follow some path in the process model. BPMN’s technical term
for such a process is an orchestration. In the BPMN 2.0 specification, the terms process model
and orchestration model mean the same thing.

It is reasonable to ask, “How can the process logic be defined in advance when an Approval is
completely arbitrary?” Ahh, but how the performer decides to approve or reject is not part of
the process logic. It is part of the internal task logic of the Approval step. For most activity
types, BPMN does not describe the task logic, only the process logic, the logic of what happens
next when the task is complete. The process logic says, “If Approval ends in the state approved,
follow this path; if it ends in the state rejected, take this other path.” So orchestration does not
mean you know in advance the particular path an instance is going to take, only that the
conditions for taking any possible path in the model are known in advance.

In contrast, a purely ad-hoc process is not an orchestration. By ad-hoc, I mean a process in
which the performer of each task determines the task to perform next, and the list of possible
next tasks is wide open, not enumerated in the model. (If the list could be enumerated in
advance, you could just show them all in the diagram, and let the task end state determine
which path to follow. Some so-called ad-hoc processes are like this, in fact. BPMN is not a

Chapter 2. How Does a Model Mean? | 14

good fit for them, not because it cannot describe the behavior but because the resulting
diagram would be difficult to understand and not worth the modeling effort.)

The path taken by any process instance depends on information accumulated by the instance
as it progresses. That information includes messages received, data produced in process
activities, and the end states of completed activities. BPMN implicitly assumes that all this
instance data is available to the process logic. With this information, the process model
“knows,” as each step is completed, where the instance is going to go next. You might even
think of the process model as an intelligent force that “guides” the instance from step to step.
It is a very short leap from there to an actual process engine in a BPM Suite. Even though the
vast majority of BPMN models do not describe automated processes, BPMN treats the process
as if it could, in principle, be automated. This helps explain why it is so important that
instances of each process activity are aligned with each other and with the process instance
itself.

Remember that BPMN originated as a graphical design language for automated process flow.
In most processes modeled in BPMN, the process logic is not automated … but BPMN treats it
as if it could be.

The Questions BPMN Asks
In my BPMN training, a student once asked me how to show in the diagram that a certain
activity normally completes in five hours. I replied that that is not a question that BPMN asks.
Instead, BPMN wants you to say what action occurs if the activity is not completed in five hours?
Do you send a reminder? Notify the manager? Escalate the task? Cancel and abandon the
process as a whole? Those are things that BPMN describes. They are part of the process logic;
the average time to complete is not.

A BPMN process model reveals only the order of activities, when they happen, and under what
conditions. It describes what happens next when an activity completes, but may have little to
say about what happens inside the activity itself. It does not describe how an activity is
performed or where or why. In fact, BPMN barely touches on what the activity is or who
performs it. Those are simply suggested by labels on activities and swimlanes in the diagram.
In fact, BPMN has been criticized for omitting this information from process models… often
by the same vendors and consultants who complain that the BPMN notation is too complex!
It’s not that those other questions are unimportant, but they are not part of the process logic,
and thus remain outside the domain of BPMN.

It is important to keep in mind that, as a multi-vendor standard, BPMN is a negotiated
agreement among many competing interests. In order to get anything at all through the
committees, its scope is narrow by necessity. Many BPMN tools do include, in fact, models of
organizational roles and groups, problems and goals, simulation parameters, KPIs, and the
like, but these models are tool-specific. The only process information described uniformly
across tools is the BPMN process logic.

Chapter 2. How Does a Model Mean? | 15

BPMN Levels and Process Modeling Conformance Subclasses
I have been conducting BPMN training since early 2007. I can say from experience that not
everyone who wants to learn BPMN is interested in the same level of process detail. While
the language excels at expressing exception handling and other event-triggered behavior, to
some modelers that is just extraneous clutter; they don’t care about it. And they don’t see the
need for all the subtypes of activities, gateways, and events in the full BPMN element set. In
fact, only a small fraction of the full element set is commonly used.

Thus, my training always started out by restricting models to a limited working set of the
shapes and symbols that we called the BPMN Level 1 palette. Day 1 was, and remains, Level 1
only. Business users easily understand it, and it makes learning the basics of BPMN easier.
Moreover, it is a palette that almost every BPMN tool supports. The Level 1 palette is
essentially the shapes and symbols carried over from traditional flowcharting, and it is
sufficient for describing most process behavior in a compact business-friendly way. In fact, if
you are willing to ignore behavior triggered by timeouts and the arrival of external messages,
it may be all the BPMN you ever need.

On Day 2 of the training, we move on to exception handling, with emphasis on Message,
Timer, and Error events, plus some additional branching and merging patterns. This requires
a slightly larger palette we call BPMN Level 2. Since event-triggered behavior is a fact of life in
real-world processes, business analysts who want to use BPMN for defining solution
requirements need to learn BPMN Level 2. Even though the BPMN Level 2 palette
encompasses only about half of the full BPMN 2.0 working set, many BPMN tools still don’t
support all of it.

Both Level 1 and Level 2 concern non-executable processes and rely solely on information visible
in the diagram. Executable BPMN, in contrast, is all about the XML details that are not
displayed in the diagram, like data models, conditional data expressions at gateways, and
detailed task assignment logic. I call it BPMN Level 3; as of this writing, it is still not part of
the training. Both Level 1 and Level 2 omit these details. Not only are they not represented in
the diagram, but until BPMN 2.0 there was no standard XML representation for them.
Consequently, their definition has always been tool-proprietary. Today, with BPMN 2.0, you
can do Level 3, that is, define executable process logic using the XML elements defined in the
BPMN standard. But tools that do that are just now getting off the ground. As of this writing,
just a few have the basics of Level 3 working, and none yet include all of the elements of the
Level 2 palette. We will discuss Level 3, or Executable BPMN, in Part V of this book.

Thus BPMN levels originated as a pedagogical strategy in my BPMN training. Even though
they were not part of the BPMN specification at the time, OMG included my explanation of
the levels as “reference material” for its OCEB BPM certification exam. But it turns out that
levels have a second value, important to tool vendors: By limiting the palette of supported
shapes, they make model interchange possible. In the end, that is what led to their inclusion
in the final BPMN 2.0 specification!

Chapter 2. How Does a Model Mean? | 16

When I left the BPMN 2.0 technical committee in June, 2009, the specification draft said that in
order to claim Process Modeling Conformance, a tool had to support the entire set of BPMN
process model shapes and symbols. While that might be possible for a pure modeling tool, it
was never going to allow interchange with tools used for executable design. Practical BPMN
interoperability between tools demands, first and foremost, restricting the working set of
shapes and symbols. If a tool vendor could limit import/export to the Level 1 working set, it
would be far easier for that tool to interoperate with others.

Even though model interchange was always an explicit goal of BPMN 2.0, the vendors in
charge of the spec drafting process were reluctant to commit to a real test of compliance. As a
member of the technical committee, I tried very hard to get the levels included in the
Conformance section of the June 2009 beta specification, but without success. But Robert
Shapiro managed to push them through in the Finalization phase, and they are now officially
part of the BPMN 2.0 final specification!

In the spec, Level 1 is called the Descriptive Process Modeling Conformance subclass, and Level 2
is called the Analytic Process Modeling Conformance subclass. A few BPMN elements switched
levels, so if you compare the current edition of this book with the original you will see some
minor changes in the palettes. In this edition, the Level 1 palette has been adjusted to match
the official Descriptive subclass exactly, and the Level 2 palette matches the official Analytic
subclass. There is also a third subclass, called the Common Executable Process Modeling
Conformance subclass. We’ll talk about that one in Chapter 19.

In the specification, members of each subclass are defined in terms of specific XML elements
and attributes. You should not be surprised that those elements and attributes represent only
the information visible in the diagram: the element type and its icons, markers, border styles,
and labels – plus the unique ids and id references needed to hold the model structure
together. All the details needed to make the process executable – definitions of data, gateway
conditions, messages, services, and task assignment – are outside of the Descriptive and
Analytic subclasses.

I believe this reinforces the basic premise of the Method and Style approach: For non-
executable process models, it’s the notation – what you see in the diagram – that really matters.
Another way of saying it is this: If it’s not in the diagram it doesn’t count. Method and Style
shows you how to convey as much meaning as possible from the BPMN shapes, symbols, and
labels alone. To achieve that, Method and Style obeys the rules of the BPMN 2.0 specification
but imposes additional conventions on the modeler to ensure the diagram’s meaning is
unambiguous.

The second half of this book, the BPMN Implementer’s Guide, shows tool vendors and
developers how to translate that meaning, as reflected by the diagram, into XML that can be
imported and understood by any tool supporting the Analytic subclass. If a given diagram
has one and only one serialization, then interchange of that model between tools becomes
straightforward and automatic.

17

 PA RT I I :
ME T H O D A N D ST Y L E – LE V E L 1

19

CHAPTER 3

3. BPMN by Example

A Simple Order Process
Consider the process to handle an order. The company receives the order, checks the buyer’s
credit, fulfills the order, and sends an invoice. In simplest terms, that looks like this in BPMN:

Figure 3-1. Basic order process

The thin circle at the start of the process is called a start event. It indicates where the process
starts. The thick circle at the end is called an end event, signifying the process is complete. The
rounded rectangles are activities. An activity like Check Credit represents an action, a specific
unit of work performed, as distinct from a function (e.g., Credit Check) or a state (e.g., Credit
OK). To reinforce this, activities should have names of the form VERB-NOUN. An element’s
name in the XML is displayed as the label of the shape in the diagram.

Exceptions and End States
This diagram does not yet represent a process model. It is just a simple description of the
happy path, the normal sequence of activities when no exceptions occur. What exceptions
could occur? Well, the buyer’s credit might not be sufficient, or the goods might not be in
stock. Those situations would represent failed orders. So a more complete model of the
process might look like this:

20 | Chapter 3. BPMN by Example

Figure 3-2. Order process with exception paths

The diamond shapes are called gateways. They represent branch points in the flow. BPMN
provides a number of different gateway types, but this one – the exclusive data-based gateway
(also called XOR gateway), a diamond with no symbol inside – means take one path or the
other based on some data condition, such as Is the buyer’s credit OK? or Are the order items in
stock? The diagram communicates the process logic by the combination of the gateway label
and labels on the sequence flows out of the gateway, called gates. Gateways are a common
way of splitting exception paths from the happy path.

Note we now have two end events, one labeled Order failed and the other Order complete.
BPMN does not require multiple end events like this, but a Method and Style principle
requires using separate end events to indicate distinct end states, such as one representing
success and the other failure, and labeling each with the name of the end state.

Also notice that the diagram now describes three distinct paths from beginning to end. Not
all of the model’s activities are performed for every instance of the process. If the credit check
fails, for example, we do not fulfill the order. If the order items are not in stock, we do not
send the invoice. This is common sense, and the BPMN diagram indicates this explicitly.

Figure 3-3. Order process in swimlanes

Swimlanes and Activity Types
BPMN also lets us indicate the performer of each activity, using swimlanes, or to use the
BPMN term, lanes (Figure 3-3). Lanes usually represent roles or organizational units that
perform activities in the process. They are drawn as subdivisions of the rectangle containing
the process, called a pool. You sometimes see pools labeled with the name of an organization,

Chapter 3. BPMN by Example | 21

but for pools that contain activity flows – some don’t, as we will see later – it’s best practice to
label them with the name of the process.

We can also indicate the type of activity through icons and markers inside the rounded
rectangle. It is generally useful to distinguish human tasks from automated ones, and these
are indicated in the diagram by different task type icons. In Figure 3-3, Receive order and Send
invoice are human tasks, called User tasks in BPMN. Check credit is an automated task, called a
Service task in BPMN. Automated means executed with no human intervention. If a person
pushes a button once and the rest of the task is automated, that is a User task, not a Service
task.

Lanes really apply only to User tasks; we can place gateways and events in whatever lane is
convenient. Some people like to put Service tasks in their own lanes as well, either one lane
for all systems or one lane per system. I tend not to do that, but it’s a matter of personal
preference.

Subprocesses
What type of activity is Fulfill Order? It does not have an icon representing a human or
automated task, but a little [+] marker instead. That is a subprocess, one of BPMN’s most
important concepts. A subprocess is an activity containing subparts that can be expressed as a
process flow. In contrast, a task is an activity with no defined subparts.

A subprocess is simultaneously an activity, a step in a process that performs work, and a
process, a flow of activities from a start event to one or more end events. In the diagram, a
subprocess can be rendered either collapsed, as a single activity shape, or expanded as a process
diagram in its own right. BPMN tools typically let you toggle or hyperlink between those two
views, allowing zoom in and out to view the process diagram at any level of detail.

One way to represent the expanded view of a subprocess is inline in the diagram, as in Figure
3-4. With inline expansion, the process flow is enclosed in an expanded subprocess shape (a
resizable rounded rectangle). Figure 3-3 and Figure 3-4 mean exactly the same thing, but
Figure 3-4 provides an additional level of detail. Note that the expanded view of Fulfill Order
looks just like a process. It has a start event, a flow of activities, and an end event for each
distinct end state. The start of the Fulfill Order process is triggered by the sequence flow into
the subprocess, which, we can see from the diagram, occurs after Check Credit whenever the
credit is OK. When the sequence flow arrives at Fulfill Order, it continues immediately from
the start event of the expansion. When Fulfill Order completes, the process immediately
continues on the sequence flow out of the subprocess.

In Figure 3-4 we also see the benefit of using multiple end events to distinguish end states, in
this case the Out of stock end state and the In stock end state. By matching the label of the
gateway following the subprocess (In stock?), it is clear the gateway is asking the question,
“Did we reach the In stock end event?” Matching the label of a subprocess end state with the
label of a gateway immediately following the subprocess is an important Method and Style
convention.

22 | Chapter 3. BPMN by Example

Figure 3-4. Order process including expanded subprocess

Process Levels and the Hierarchical Style
The process depicted inside the Fulfill Order activity in Figure 3-4 represents a child process
level with respect to the level including the overall process start and end and the Fulfill Order
subprocess, shown in Figure 3-3. The child level could itself contain subprocesses, and there
is no limit to the number of levels you can nest in this way.

Inline expansion, as in Figure 3-4, depicts the parent and child levels in the same diagram, but
it is not the only way to render the child-level detail. In fact, with most tools, except in simple
cases, it is rarely the best way. Note that Figure 3-4 takes up a lot more space on the page than
Figure 3-3. For end-to-end processes, showing all the subprocess details on a single page
usually isn’t possible. One solution is to use off-page connectors to link to a continuation of the
process level on another diagram. BPMN provides a notation for this, called a Link event pair.

But I recommend a different way: depicting the child-level expansion in a separate diagram. I
call it hierarchical expansion, because it expresses the end-to-end process as a hierarchy of
diagrams. In the tool, the parent and child-level diagrams are hyperlinked together, but we
cannot rely on hyperlinks when the model is printed to paper or pdf. In that case, we need to
rely on matching labels to link the diagrams together. Let’s see how it works, and then talk
about why it’s the preferred way.

Chapter 3. BPMN by Example | 23

Figure 3-5. Subprocess expansion on a separate page

Figure 3-5 shows the expansion of Fulfill Order in the child-level diagram. Note that it omits
the pool shape, which is inherited implicitly from the parent. Remember, this is not a new
process but a subprocess of Order Process. The child-level diagram also omits the expanded
subprocess shape surrounding the flow. A child-level expansion may contain lanes, although
none are represented in Figure 3-5. If lanes are absent in the child level but present in the
parent level, it is implied that activities in the child level inherit the lane of the collapsed
subprocess in the parent level. But technically, lanes are defined independently at each
process level.

While inline expansion is useful in simple diagrams, in most cases I prefer the hierarchical
style. One reason is it allows the top level of a complex process to be represented end-to-end
on a single page. That top-level view provides little detail about each major step of the
process, but it does reveal at a glance all the possible paths connecting those steps, the
meaning of the process instance, how the process starts, its possible end states, and its
interactions with external entities. In other words, it expresses on a single page the “big
picture” of the end-to-end process.

From the top-level diagram you can then drill down into each child-level subprocess and
view its details in a separate linked diagram, which can in turn drill down further to a deeper
child level, and so on. With hierarchical modeling, additional detail is provided in layers, and
you can zoom in to view detail at any level without losing the integrity of a single end-to-end
model. Even though the model is represented visually as separate pages, in the XML it is a
single model. That is far better than maintaining separate high-level and detailed models, and
keeping them in sync as the process logic changes over time.

The hierarchical style does add a bit of complexity when viewing the diagrams, since parent
and child levels appear on separate pages. For example, with inline expansion (Figure 3-4)
the end event In stock and the gateway In stock? appear on the same page, while in the
hierarchical style (Figure 3-3 and Figure 3-5) they appear on separate pages. Once you get
used to the hierarchical style, mentally connecting the diagrams becomes easy.

The child-level diagram represents the activity flow inside the subprocess. One mistake
beginners make is replicating, inside the child-level expansion, activities that occur either
before the subprocess starts or after it ends. For example, Figure 3-6 is incorrect as a child-level
expansion of Fulfill Order:

24 | Chapter 3. BPMN by Example

Figure 3-6. Incorrect expansion of Fulfill Order

The reason is Send Invoice is not part of the subprocess. In the parent level diagram (Figure
3-3), it comes after Fulfill Order is complete. Modeling the child level as in Figure 3-6 means
the invoice is sent twice, once within Fulfill Order and then again afterward. That was not the
modeler’s intent. Remember, when the child level is complete, the flow immediately
continues on the sequence flow out of the collapsed subprocess at the parent level.

Taking another look at Figure 3-3, you might decide that simply ending the process when a
requested item is out of stock is not the best way to handle this exception. Perhaps you would
contact the customer and offer a replacement item, and if the customer accepts the offer, go on
to fulfill the order. That would look something like this:

Figure 3-7. Loopback to handle exceptions

In BPMN, unlike block languages such as BPEL, a sequence flow may freely loop back to a
previous step. In Figure 3-7, if the replacement offer is accepted, a gateway directs the flow
back to Fulfill Order. Remember the process is not complete until an end event is reached.

The BPMN spec does not place any significance on whether a sequence flow enters an activity
from the left, right, top, or bottom, nor even whether pools and lanes run horizontally or
vertically. These are really matters of personal style. I usually try to draw the flow left to right
with sequence flows entering activities from the left and exiting from the right. It takes some
rearranging to keep line crossings at a minimum, and sometimes that cannot be avoided. But
keeping the diagram as neat and consistently organized as possible is important to the
objective of shared understanding. Nothing is more frustrating than looking at a diagram
someone else has created and being unsure where exactly the process starts and ends.

Chapter 3. BPMN by Example | 25

Parallel Split and Join
Now let’s consider one last detail of our Fulfill Order subprocess. In order to expedite
shipment, we’d like to make the shipping arrangements concurrently with picking the stock,
that is, in parallel. We originally considered making these arrangements to be part of Ship
Order, but technically that means we don’t do it until after Pick Stock completes.

Figure 3-8. Parallel split and join

Figure 3-8 shows how it looks. Again it uses a gateway, in fact two of them, but with a symbol
inside. A gateway with a + symbol inside is a parallel gateway, also called an AND-gateway. A
parallel gateway with one sequence flow in and two or more out is called a parallel split or
AND-split. It means unconditionally split the flow into parallel, i.e., concurrent, segments.
Both Pick Stock and Arrange Shipment are enabled to start at the same time. If the same
shipping clerk performs them both, they cannot literally be done simultaneously. Concurrent
really means it does not matter which is done first.

We cannot combine this parallel gateway with the XOR gateway that precedes it (Available?)
because they mean different things. The Available? gateway is an exclusive decision, meaning
take one path or the other. After we take the yes path, then the AND-split says we do Pick Stock
and Arrange Shipment in parallel.

The second parallel gateway, with multiple sequence flows in and one out, is called an AND-
join or synchronizing join. It means wait for all of the incoming sequence flows to arrive before
enabling the outgoing sequence flow. In plain English, it means Ship Order cannot occur until
both Pick Stock and Arrange Shipment are complete.

Labels on AND-splits and joins (and sequence flows connecting them) add no new
information, so it is best to omit them.

Unlike BPEL, BPMN does not require all the paths out of a parallel split to be merged in a
downstream AND-join. They could even lead to separate end events. In that case, the process
level is not complete until all parallel segments have reached an end event.

Collaboration and Black-Box Pools
It is not uncommon for experienced flowcharters, new to BPMN, to make the Customer a lane
inside the process, and start the process with tasks in that lane like Fill out order form and

26 | Chapter 3. BPMN by Example

Submit order… but that would be incorrect. Actually, the Customer is external to the process,
not part of it. Think about an online store like Amazon.com. Have you ever put a book or
some other item in your shopping cart but, in the end, decided not to order it after all? Of
course you have! Now in that situation, have you created an instance of Amazon’s order
process? I think not. Amazon’s order process starts when they receive the order, even though
Amazon itself provides the shopping site. The order process includes securing payment,
retrieving the order items from the warehouse, and delivering them to the Customer.

This is a fundamental point, and we will discuss it further, but for now please just accept that
the requester of a process is usually best modeled as an external participant, not as a lane inside
the process pool.

We model an external entity like the Customer as a separate pool in our diagram. But unlike
the pool that contains the Order Process, the Customer pool is empty. It contains no flow
elements whatsoever. We call it a black-box pool – meaning Customer’s internal process is
invisible to us. Technically, in the XML, a black-box pool represents a participant – an external
business entity – that has no process. (It doesn’t literally mean that the Customer has no
defined buying process, but that the Customer’s internal process logic is invisible to the
Seller.) While we label a process pool with the name of a process, we label a black-box pool
with the name of the role or entity, in this case Customer (Figure 3-9).

Figure 3-9. Order process in collaboration diagram

The Customer (like other external participants) interacts with the process by exchanging
messages. In BPMN, the term message means any communication between the process and an
external participant. We can indicate these communications in the diagram with another type
of connector, called a message flow. A sequence flow is represented by a solid line connector
and can only be drawn within a pool; a message flow, a dashed line with an unfilled
arrowhead and little circle on the tail, can only be drawn between two pools.

Chapter 3. BPMN by Example | 27

In BPMN 2.0, Figure 3-9 is called a collaboration diagram. In addition to the activity flow of our
internal Order Process, it shows the interaction of our process with external participants by
means of message flows. Note that the message flows attach to the boundary of the black-box
pool and directly to activities and events in the process pool.

The envelope icon inside the start and end events indicate that these events receive and send
messages. In BPMN terminology, the start event has a Message trigger, and the end event has
a Message result. A Message start event has special meaning in BPMN, and we will see it again
and again. It signifies that a new instance of the process is created upon receipt of a message,
in this case Order. If a second Order message arrives immediately after the first, it creates a
second instance of this process. You can only have a Message start event in a top-level
process; a subprocess must have a None start event, meaning no trigger icon.

A Message end event signifies that the process sends a message when the end event is reached.
In BPMN, the black event icons mean the process sends a signal, in this case a message; a
white event icon means the process receives the signal. Here the process sends an Invoice
message on reaching the Order complete end state, and sends a Failure notice on reaching Order
failed.

Now, since it is the Message start event that is “receiving” the order, we will rename the first
User task Enter order. Similarly, since the end event is now sending the invoice, we will
rename the User task Prepare invoice. We don’t want to duplicate the action of a Message event
with an activity that does the same thing.

Finally, we see message flows out of and into the human task Offer replacement item. A
message flow signifies any communication between the process and external participants – a
phone call, fax, or paper mail. Activities can send and receive message flows just as events
can.

As we said at the start of this section, the idea that the Customer in Figure 3-9 is not part of
the process, but external to it, is a surprise to many experienced flowcharters. But actually,
this idea goes all the way back to the Rummler-Brache diagrams of the 1980s, what business
people today call swimlane diagrams. Geary Rummler was one of the first analysts of
business performance from a process perspective and a great influence on the management
discipline of BPM. Paul Harmon, editor of BPTrends and a former colleague of Rummler’s,
recounts11:

An IBM researcher took Rummler's courses and was so impressed with the power of
Rummler-Brache diagrams that he created an IBM process methodology called LOVEM. The
acronym stood for Line of Vision Enterprise Methodology. The "line", in this case, referred to
the swimlane line at the top of a Rummler-Brache diagram that divided the customer from the
process and allowed the analyst to see exactly how the process interacted with the customer.

11 Paul Harmon, BPTrends Advisor, December 8, 2008,
http://www.bptrends.com/publicationfiles/advisor20081209.pdf

28 | Chapter 3. BPMN by Example

Inherent in analysis of process performance is the interaction of a process with its “customer.”
In Rummler-Brache and derivatives like LOVEM, the customer was drawn in the top
swimlane, and communications across that line represented the customer’s perspective on the
process. In BPMN, the notation has changed slightly – we show external participants in
separate pools – but the concept remains the same.

The same modelers who initially want to make Customer a lane inside the process often insist
on inserting activities like Fill out order form or Submit order inside the Customer pool. That is
not only unnecessary but incorrect. A pool containing flow elements is, by definition, a
process pool, not black-box. As such, it has to represent a complete process from start to end.
So if you put an end event after Submit order, how do you receive the replacement offer,
rejection notice, or invoice? You cannot draw those message flows to the boundary of a
process pool, only to the boundary of a black-box pool. To draw those message flows you
would be forced to draw a complete buyer process for the Customer. But if you are the seller,
do you even know the buyer’s process? Probably not.

In my BPMN training, I normally leave the discussion there. But technically, BPMN 2.0 does
define something called a public process (in BPMN 1.2 it was called an abstract process). A
public process lies in between a black-box pool (no process) and a fully defined process
(called a private process). A public process contains only activities that send or receive messages; all
other activities are omitted. The intent is to represent the kind of message interactions
defined in B2B standards like RosettaNet or ebXML. There the buyer and seller do not know
the full details of each other’s process logic, but the allowed types and sequences of message
exchanges – like quotes, orders, confirmations, ship notices, and invoices – may be established
in advance through industry standards and trading partner agreements. That rarely applies
in BPMN collaboration diagrams, so except when the interaction is based on a defined B2B
exchange pattern, you should simply use a black-box pool, not a public process, to represent
the requester.

Start Events and the Process Instance
The Message start event in Figure 3-9 is significant in another way. A Message start event
indicates that the process starts upon receipt of a request. Here the request takes the form of
an order, but a loan application, an insurance claim, or customer service request are all
examples of requests issued to a process provider. I recommend labeling Message start event
Receive [name of message], such as Receive Order. Not all processes are triggered by a request,
but most are. A Message start event always signifies a process started by an external request,
and the pool – usually black-box – at the tail of the message flow identifies the requester, in
this case Customer.

A Message start event also signifies that the process instance represents the fulfillment of that
single request. That in turn implies that each activity in the process is just related to that one
request as well. In particular, it may not describe the fulfillment of other requests for the
same process, such as another order. This is an extremely important point, and we will return
to it in Chapter 8.

Chapter 3. BPMN by Example | 29

A Message start event always signifies that the process is started by external request, even
when the requester is not a customer. It could be, for example, another internal process.
Employee-facing processes are a gray area. Is the Employee external or internal to the
process? It depends. Sometimes it is better to model the Employee as an external black-box
pool, and other times better to make Employee a lane inside the process pool. Here are some
guidelines, or rules of thumb, about modeling the requester.

1. If the process starts upon receipt of a form or other document and either

a. the requester has no further interaction with the process other than receiving
some form of final result or status notice, or

b. the requester has occasional intermediate interactions with the process on an
exception basis, but has no predefined process tasks to perform,

then model the requester as an external black-box pool sending a message flow to the
process’s Message start event.

2. If the requester has defined tasks to perform as a normal part of the process, model
the requester as a lane within the process pool, and use a None start event (no trigger)
for the process. There is no black-box pool for the requester in this case.

In Figure 3-10, the requester is external. Even though there are intermediate interactions with
the process, they are on an exception basis.

Figure 3-10. External participant as black-box pool

In Figure 3-11, the Employee has specific tasks to perform in the process, preparing the
requisition and justification documents, securing management approval, and verifying the
equipment is in working order when it arrives. Normally in this case you would use a None
start event, as shown here, signifying manual start by a task performer.

30 | Chapter 3. BPMN by Example

Figure 3-11. Initiation by an internal task performer

But if your focus is on what happens in Purchasing, the Procure-to-Pay process, you could
just as easily make the Employee an external pool here, as in Figure 3-12. In that case the
Employee is just another external requester. It’s all a matter of perspective.

Figure 3-12. Another perspective on the Employee purchase requisition

The Top-Level Diagram
Let’s take another look at what we have created so far in our Order process (Figure 3-13). At
this point, we have a fairly complete top-level BPMN diagram. In this diagram, the details of
Fulfill Order are hidden, but we can drill down to see the child-level expansion in a separate
hyperlinked diagram.

Chapter 3. BPMN by Example | 31

Figure 3-13. Order process, top-level diagram

But note how much the top-level diagram reveals about this process. We see that the instance
represents an order, since it starts upon receipt of the Order message. It has two end states,
Order complete and Order failed. The source of order failure is either bad credit or out of stock
with non-acceptance of the offered replacement. Each end state returns a different final status
message to the Customer. With processes initiated by a request message, it is good practice to
return final status to the requester from message end events.

This is admittedly a simple process, but it is not too different from the top-level diagram of
typical real-world end-to-end processes. All the shapes and symbols we used are members of
the Level 1 palette. In the next chapter, we’ll take a closer look at the complete Level 1
element set.

33

CHAPTER 4

4. The Level 1 Palette

All of the shapes and symbols used in the last chapter are part of the Level 1 palette, what
BPMN 2.0 calls the Descriptive Process Modeling Conformance subclass. If you are willing to
ignore event-triggered behavior, you can model almost any process without going beyond the
Level 1 palette. With the exception of message flows and Message events, the Level 1
notation is basically carried over from traditional flowcharting.

The following is a complete list of the elements in the Level 1 palette, members of the
Descriptive subclass in the BPMN 2.0 spec, including some we didn’t use in the last chapter:

• Activity: Task (User, Service, None), Subprocess, Call Activity
• Gateway: Exclusive, Parallel
• Start event: None, Message, Timer
• End event: None, Message, Terminate
• Sequence flow and Message flow
• Pool and Lane
• Data object, Data store, and Data association
• Documentation
• Artifact: Text annotation, Association, and Group

In this chapter we’ll review each of these elements. If you have done flowcharting before, you
may find that BPMN’s meaning is slightly different from what you are used to.

Activity
An activity represents a unit of work performed in the process. It is always represented by a
rounded rectangle. It is the only BPMN element that has a performer. Every activity is either a
task or a subprocess. A task is atomic, meaning it has no internal subparts described by the
process model; the actions and end states of a task are merely suggested by its name. A
subprocess is compound, meaning it has subparts defined in the model. Those subparts are
modeled as a child-level process, an activity flow from start to one or more explicit end states.

34 | Chapter 4. The Level 1 Palette

Task
A task is represented in the diagram by the activity shape, rounded rectangle, with the task
type indicated by a small icon in the upper left corner. A task represents an action, not a
function or state. It should be labeled VERB-NOUN.

Figure 4-1. Top row, left to right: User task, Service task, Abstract task. Bottom row, left to
right: Send task, Receive task, Manual task, Script task, Business Rule task

BPMN 2.0 defines eight task types, but the Level 1 palette just includes the three most
commonly used (Figure 4-1, top row).

• A User task (left), with the head-and-shoulders icon, means a task performed by a
person.

• A Service task (center), with the gears icon, means an automated activity. Automated
means when the sequence flow arrives, the task starts automatically, with zero
human intervention. If a person has to just click a button and the rest is automatic,
that is a User task, not a Service task.

• An Abstract task (right), with no task type icon, means the task type is undefined.

Send and Receive Task
Send and Receive tasks are part of the Level 2 palette. They are similar to Message events and
are discussed in Chapter 7. The others are outside of the Level 2 palette.

Manual vs. User Task
A Manual task, with the hand icon, should only be used in an executable process, that is, an
automated workflow. In that context, a Manual task is one performed without any
connection to the workflow engine, as contrasted with a User task, which is managed by the
engine. If your process model is not executable, it should not include Manual tasks. For non-
executable processes, just use a User task for any human task.

Script vs. Service Task
A Script task, with the scroll icon, also should only be used in an executable process. In non-
executable processes, a Service task signifies any automated process activity, but in an
executable process it means the process issues a service request to some external system or

Chapter 4. The Level 1 Palette | 35

entity to perform that function. The implementation of the service is not defined by BPMN,
but by the internals of the system that performs it.

A Script task, in contrast, means an automated function performed by the process engine itself.
The implementation is a short program, typically Javascript or Groovy, embedded in the
process definition XML. Because the process engine is usually busy executing the process
logic, it does not have time to perform complex tasks, so Script tasks are typically used for
simple computations such as data mapping.

If your process is not executable, it should not include Script tasks. For non-executable
processes, just use a Service task (or equivalent Send/Receive pair) for any automated task.

Business Rule Task
The Business Rule task, with the grid icon, is new in BPMN 2.0. It signifies a task that executes
a complex decision on a business rule engine. A Business Rule task is effectively a special
type of Service task.

Subprocess
A subprocess is a compound activity, meaning an activity with subparts that can be described
as a child-level process. A subprocess can be represented in multiple ways in the diagram. A
collapsed subprocess is drawn in the parent-level diagram using a normal-size activity shape
with a [+] symbol at the bottom center (Figure 4-2, top); the child-level expansion is drawn in
a separate hyperlinked diagram (Figure 4-2, bottom).

Figure 4-2. Hierarchical expansion: Collapsed subprocess in parent level (top) corresponds
to child-level expansion (bottom) in separate hyperlinked diagram.

Alternatively, an expanded subprocess (Figure 4-3) is drawn as an enlarged activity shape in the
parent-level flow that encloses the child-level expansion in the same diagram.

There is no semantic difference between Figure 4-2 and Figure 4-3. They mean exactly the
same thing: When the sequence flow arrives at the collapsed subprocess in the parent level,
the process immediately continues out of the start event at child level. And when it reaches
the child-level end event, it resumes on the sequence flow out of the subprocess in the parent
level. In fact, in the semantic model, there is no distinction at all; the XML for both is exactly
the same. In BPMN 2.0, the only difference is in the graphical model (see Chapter 17).

36 | Chapter 4. The Level 1 Palette

Figure 4-3. Inline expansion: Expanded subprocess shape in parent level encloses the
child-level process, all on the same diagram.

An important BPMN rule to keep in mind when using inline expansion is that a sequence
flow cannot cross the subprocess boundary. The incoming and outgoing sequence flows must
connect to the subprocess boundary, and there should be start and end events in the child-
level expansion inside the rounded rectangle. Figure 4-4 is incorrect; Figure 4-3 is correct.

Figure 4-4. A sequence flow cannot cross subprocess boundary.

A subprocess start event must have a None trigger. You may not use a Message start event or
Timer start event in a subprocess. That is a BPMN rule, not a style rule. The reason is that the
start of the subprocess is not triggered by an event; it is always triggered by the same thing –
arrival of the incoming sequence flow12.

Parallel Box and Ad-Hoc Subprocess
With one exception, a subprocess should always have a single start event. The one exception
is when the child level is composed of a set of activities with no sequence flows
interconnecting them (Figure 4-5, left). This representation, which has no start or end events,
is called a parallel box. It means that when the subprocess starts, all of its child activities are
enabled to start in parallel. They can be completed in any order, but all must be complete in
order for the subprocess to be complete.

12 This is true for a regular subprocess, but an event subprocess is an exception handler triggered by
an event. Event subprocesses are not included in the Level 1 or Level 2 palettes. They are
discussed in Chapter 7.

Chapter 4. The Level 1 Palette | 37

Figure 4-5. Parallel Box (left) and Ad-Hoc Subprocess (right)

A variant of the parallel box is the ad-hoc subprocess, denoted by a tilde marker at the bottom
(Figure 4-5, right). It is essentially the same, except that not all of the child activities must be
performed in order to complete the ad-hoc subprocess. It is complete when the performer
declares it to be complete.

Both parallel box and ad-hoc subprocess are legacies of BPMN 1.0 and not particularly useful.
In BPMN 2.0, ad-hoc subprocess is not included in either the Descriptive (Level 1) or Analytic
(Level 2) subclass.

The Value of Subprocesses
Subprocesses are a valuable feature of BPMN and one of the least appreciated. Their value
has several dimensions:

1. Visualize end-to-end process

BPM as a management discipline emphasizes managing and monitoring the business from the
perspective of “end-to-end” processes, meaning customer-facing flows that cut across
traditional organizational and system boundaries. To do that you need to understand the end-
to-end process as a single thing, not multiple things. The ability to visualize the end-to-end
process on a single page greatly aids that understanding, and collapsed subprocesses enable
that. The details of each subprocess are visualized on separate hyperlinked diagrams, but
they are all part of a single semantic model. From the end-to-end view you can zoom in to see
as much or as little detail as you want, without the need to create and maintain multiple
process models.

Visualizing the end-to-end process on a single page assumes the hierarchical style, in which
the parent and child process levels are rendered in separate diagrams. The end-to-end view is
just the top-level diagram in the hierarchy. It reveals at a glance not only the major steps of the
process but the meaning of the process instance, the process’s possible end states, and its
interactions with the customer, service providers, and other internal processes.

Hierarchical modeling is not required by the BPMN specification. In fact, for many traditional
BPM practitioners, used to working with stickies on the wall to capture process flows from
the bottom up, it might be a significant change. But flat models stretching over twenty feet of
wall space make it difficult to appreciate the end-to-end process as a single thing. The

38 | Chapter 4. The Level 1 Palette

traditional solution to this problem is to create separate high-level and detailed models, but
this requires keeping those models in sync as the process changes. Hierarchical modeling in a
BPMN tool does not have this problem, because a single semantic model contains both high-
level and detailed graphical views. For this reason, the Method and Style approach relies on
hierarchical modeling.

2. Enable top-down modeling

Subprocesses are also valuable to “top-down” process modeling. That means starting with
the top-level diagram, in which collapsed subprocesses represent the major steps of the
process, and then adding the details of each step in child-level diagrams. A collapsed
subprocess with no child-level expansion can serve as a placeholder for unknown details
while maintaining the integrity of a valid end-to-end model.

3. Clarify governance boundaries

Subprocesses facilitate distributed process ownership and governance. End-to-end processes
frequently cross governance boundaries within the enterprise. Different parts of the process
may be controlled by different executives who jealously guard their turf. Problems can arise
when the boundaries between process activities are fuzzy.

Subprocesses provide unambiguous demarcation of those governance boundaries. If the top-
level diagram accurately describes the interaction between independently governed
subprocesses, then each subprocess can be modeled and maintained independently.
Distributed process governance is aided by a model repository with authorization and
versioning features.

4. Scope event handling

Event-triggered exceptions are important in real-world processes, and subprocesses are useful
for defining the boundaries of a single exception handler. An event attached to a subprocess
defines an event handler that is initiated if the event trigger occurs at any step within the
subprocess. If the same trigger – say an order cancellation message from the customer – is
handled differently in different parts of the process, each of those parts may be enclosed in a
subprocess with an attached event representing its distinct event handler. We will see
examples of this in Chapter 7.

Call Activity
BPMN 2.0 distinguishes a subprocess, in BPMN 1.2 called embedded subprocess, from a call
activity, formerly called reusable subprocess. This distinction has to do with whether the
subprocess detail – the child-level expansion – is defined within the parent-level process or
independently. If you have some subprocess that is used in more than one process, it is best
to define it independently – in its own file – and then call it from each process that uses it,
rather than replicate and embed the definition within each calling process.

In the diagram, call activity has a thick border, while subprocess has a thin border (Figure 4-6).

Chapter 4. The Level 1 Palette | 39

Figure 4-6. Subprocess and Call Activity

For example, suppose you sell both widgets and widget maintenance. The Widget Order
process is different from the Maintenance Order process, but they share a common Billing
subprocess. If you use a regular subprocess, you would need to replicate the Billing definition
inside both Widget Order and Maintenance Order, and maintain that synchronization whenever
Billing changed. A better way is to make Billing an independent top-level process defined in a
separate file, and invoke it from call activities in Widget Order and Maintenance Order. The call
activity points to a process element in the called model, in this case Billing. With subprocess,
the calling and called processes are defined in the same model; with call activity they are
independent.

You can similarly use call activity to call a reusable task, in BPMN 2.0 called a global task. This
call activity looks like a regular task, except for the thick border. For Level 1 and Level 2 (i.e.,
non-executable) modeling, global tasks add little value, since the only “detail” included in the
task definition is its task type and name. But in executable BPMN a User task definition, for
example, would include task data, its user interface, and similar details. To reuse that task
definition in multiple places (in the same process or across processes), you would define it as
a global User task, with multiple call activities pointing to it.

Gateway
A gateway, the diamond shape, “controls” process flow, splitting it into alternative paths.
Without a gateway, when a BPMN activity has more than one outgoing sequence flow, the
process splits into multiple parallel paths. Giving them alternative labels may have worked in
flowcharting, but it doesn’t work in BPMN (Figure 4-7). If you mean the process should take
one path or the other, you need a gateway (Figure 4-8).

Figure 4-7. Incorrect: Alternative paths require a gateway in BPMN

40 | Chapter 4. The Level 1 Palette

Figure 4-8. Correct: Alternative paths require a gateway in BPMN

Exclusive Gateway
BPMN defines several types of gateways, distinguished by the symbol inside the diamond,
but the one shown here, with no symbol inside, is the most common. Officially named the
exclusive data-based gateway, it is more commonly known as the XOR gateway. “Exclusive”
means only one of its outgoing sequence flows, or gates, is enabled in any instance. “Data-
based” means the enabled gate is determined by evaluating an expression of process data.
Level 1 or Level 2 BPMN does not include formal data expressions, so the gateway conditions
are expressed in the diagram by the labels of the gateway and gates.

When a gateway has two gates, I like to label the gateway as a question and label the gates yes
and no. As we saw in Chapter 3, matching such a gateway label to an end state of the
preceding activity helps you trace the logic from parent to child process levels in a
hierarchical model.

There are two alternative ways to draw the XOR gateway. One has no symbol inside the
diamond; the other has an X inside (Figure 4-9). There is no difference in meaning between
the two, but the spec asks that you pick one way and use it consistently. I favor the one with
no symbol inside.

Figure 4-9. Exclusive (XOR) gateway, shown in alternative representations

Figure 4-10. A gateway cannot make a decision; it only tests a data condition.

An important difference between a BPMN gateway and the similar-shaped “decision box” in
flowcharting is that a gateway does not “make” a decision; it just tests a data condition. A gateway

Chapter 4. The Level 1 Palette | 41

cannot approve or reject, for example. You need a task to do that. Then a gateway following
the task can test the decision task end state and route the subsequent flow based on the result.
The left diagram in Figure 4-10 is incorrect in BPMN; the one on the right is correct.

Parallel Gateway
A parallel gateway (Figure 4-11), also called an AND-gateway, with one sequence flow in and
multiple sequence flows out, signifies a parallel split or AND-split. It means that all of the
outgoing sequence flows are to be followed in parallel, unconditionally. It is distinguished
from the exclusive gateway by the + symbol inside the diamond.

Figure 4-11. Parallel gateway

Each outgoing path thus represents a concurrent thread of process activity, meaning they
overlap in time. Parallel paths may either be joined downstream or they may lead to separate
end events. In the latter case, each parallel path must reach an end event in order for the
process level to be complete. Following an activity or start event, multiple outgoing sequence
flows means parallel split, so an AND-gateway is unnecessary in that case. The two diagrams
in Figure 4-12 have identical semantics.

Figure 4-12. Parallel split gateway is technically redundant; both diagrams mean the same
thing

In Figure 4-12, the parallel gateway drawn with multiple sequence flows in and one out is
called a parallel join or AND-join. It is a type of synchronizing join because it requires all of its
incoming flows to arrive before enabling the outgoing flow. An AND-gateway may ONLY be
used to join paths that are unconditionally parallel. Typically this occurs only when the paths

42 | Chapter 4. The Level 1 Palette

were originally the result of a parallel split, either using the parallel split gateway or multiple
sequence flows out of an activity.

Unlike the AND-gateway split, the AND-join may not be omitted. Directly merging parallel
sequence flows into an activity, without joining them first, triggers the activity (and
everything downstream from it) multiple times. That is usually not what you mean. Since a
sequence flow label signifies a condition and AND-gateways are unconditional, you should
not label an AND-gateway or its gates.

Start Event
A start event is always represented as a circle with a single thin border. Its purpose is to
indicate where and how a process or subprocess starts. Normally a process or subprocess has
only one start event. We saw how a parallel box or ad-hoc subprocess may have no start
events, and we will see in this section how a top-level process (not a subprocess) may have
more than one.

In a top-level process, the icon inside the circle, called the trigger, identifies the type of signal
that instantiates the process. Just as important, the trigger identifies the meaning of the
process instance as the handling of that single triggering event. A subprocess MUST have a
None trigger, no icon inside, because a subprocess is not initiated by an event but by an
incoming sequence flow.

BPMN 2.0 defines seven start event triggers, but the Level 1 palette includes only four of them
(Figure 4-13).

Figure 4-13. Level 1 Start events

None Start Event
A None start event has no trigger. In a top-level process, it either means the process trigger is
unspecified or signifies manual start by a task performer, as discussed in the previous
chapter. Usually None start events are unlabeled.

A subprocess MUST have a None start event; it is a spec violation to have a triggered start in a
subprocess.

Message Start Event
A Message start event, discussed in the previous chapter, means that the process is triggered
upon receipt of a message, a signal from outside the process. It signifies a process that starts
upon external request, and the process instance represents the handling of that single request.

In order to maximize diagram clarity, a Message start event should be labeled Receive X,
where X is the name of the message. Also, when using Message events you should get in the

Chapter 4. The Level 1 Palette | 43

habit of drawing the message flow and labeling it with the name of the message. These are
style rules, not rules of the BPMN specification.

Timer Start Event
The Timer start event, with a clock icon, signifies a scheduled process, usually a recurring
schedule. The start event should be labeled to indicate the schedule, such as Monthly or
Fridays 4pm.

Like a Message start event, a Timer start event also reveals the meaning of the process
instance. Each instance represents exactly one of those scheduled starts. For example, Figure
4-14 shows a monthly sales reporting process. If some activity, say Review loss reports, cannot
be completed by the monthly sales report deadline, you cannot simply loop back in this
diagram to mean include in next month’s report. Next month’s report is a separate instance of
this process. Every activity in the process pertains only to this month’s report.

Figure 4-14. Scheduled process

Multiple and Multiple-Parallel Start Event
The Multiple start event (Figure 4-15, left) has a distinct shape – a pentagon – but does not
represent a distinct BPMN element in the semantic model. It means that the process could be
initiated by any one of multiple triggers, say either Message A or Message B, or possibly either
by regular schedule (Timer) or on special request (Message). The start event label should
indicate all of the possible trigger conditions.

Figure 4-15. Multiple and Multiple-Parallel start events

The Multiple-Parallel start event (Figure 4-15, right) was added in the Finalization phase of
BPMN 2.0. It is very rarely used, and it is not part of either the Level 1 or Level 2 palette.

44 | Chapter 4. The Level 1 Palette

Like the Multiple start event, it is a distinct shape but not a distinct semantic element. Where
the Multiple event means any of its multiple triggers will start the process, Multiple-Parallel
means the process requires all of the triggers to occur before instantiation. They can occur in
any order.

Alternative Start Events
The path out of a Multiple start event is the same regardless of which trigger signal is
received. But what about the case where the initial process activity depends on which trigger
occurs? For that you don’t use a Multiple start event; you just use more than one simple start
event, typically Message.

You can only do this in a top-level diagram. Each start event represents an alternative trigger
for the process. Once triggered, the process or subprocess instance will ignore a signal
subsequently received by any other start event. Such a signal would initiate a new process
instance.

A common use case for this is channel-dependent start. For example, a process triggered by
customer request may require different initial step if the request arrives via the call center
versus web or fax, but has the same backend processing regardless of the contact channel. The
best way to model this is with multiple Message start events, each representing an alternative
start point for the process (Figure 4-16). Remember that this is not the same as a Multiple start
event. You would use Multiple start if any of the triggers initiates the same path. You would
use more than one start event if each trigger initiates a different path.

Figure 4-16. Channel-dependent start

End Event
An end event is always represented as a circle with a single thick border. It indicates the end
of a path in a process or subprocess. An end event in either a process or subprocess may be
drawn with a black or “filled” icon inside, indicating the result signal thrown when the event
is reached. Unlike start events, it is commonplace to see more than one end event in a process
or subprocess. In fact, the Method and Style approach requires a separate end event for each
distinct end state in a process level.

BPMN 2.0 defines nine end event types, distinguished by their result, but the Level 1 palette
includes only three of them, plus Multiple.

Chapter 4. The Level 1 Palette | 45

Figure 4-17. Level 1 end events

None End Event
A None end event (no icon inside) signifies that no result signal is thrown when the end event
is reached. In a process level with parallel flow, it is technically allowed to end the parallel
paths in separate end events, but they do not represent distinct end states. For that reason, if
they are all None end events, it is best to merge the paths into a single None end event. You
don’t need a gateway to join parallel paths at a None end event; in fact, you should not use
one. Since the process level is not complete until all parallel paths have reached an end event,
a join is always implied at a None end event.

Message End Event
A Message end event (black envelope icon) signifies that a message is sent upon reaching the
end event. Best practice is to draw a message flow from the event to the external pool. A
common use case is return of a final status response to the Customer. If you merge parallel
paths directly into a Message end event, the message is triggered multiple times, so use a join
gateway if you mean to send the message once.

Terminate End Event
A Terminate end event (bulls-eye icon) is a special case. Reaching Terminate in a process or
subprocess immediately ends that process or subprocess, even if other parallel paths are still
running. Reaching Terminate in a subprocess only ends that subprocess, not the parent-level
process. Some modelers use Terminate simply to indicate an exception end state. However, I
recommend reserving Terminate for the case where its specific semantics are required, an
exception in one parallel path of a process level.

Multiple End Event
A Multiple end event (pentagon icon) is similar to the Multiple start event, in that it has a
distinct shape but does not represent a distinct semantic element. It just implies more than
one ordinary result is thrown, for example two different messages.

Sequence Flow
Sequence flow, drawn in the diagram as a solid line connector, represents the sequential
execution of process steps: When the node at the tail of a sequence flow completes, the node
at the arrowhead is enabled to start. In an executable process, it represents an actual flow of
control: When the tail node completes, the arrowhead node is automatically started by the
process engine. The only elements that can connect to the tail or head of a sequence flow are

46 | Chapter 4. The Level 1 Palette

activities, gateways, and events, called flow nodes in the BPMN 2.0 metamodel. In other
words, sequence flow represents orchestration.

Figure 4-18. Sequence flow

All activities, gateways, and events in a process level must lie on a continuous chain of
sequence flows from start event to end event. (The spec does not absolutely require this, but
Method and Style, with a few exceptions like the parallel box, does require it.) The chain of
sequence flows is confined within a process level, so a sequence flow may not cross a subprocess
or pool boundary. This is a fundamental rule of BPMN. Also, both ends of a sequence flow
must be connected to a flow node. If one end is left unconnected, the model will not be valid.

Message Flow
Message flow, drawn in the diagram as a dashed line connector, represents communication
between the process and an external entity. A message flow can connect to any type of
activity, a Message (or Multiple) event, or black-box pool. Note: You may not connect a
message flow to the boundary of a process pool; you must directly connect to an activity or
event inside the pool. Elements connected to the head and tail ends of a message flow may
not be part of the same process (including its child levels).

Figure 4-19. Message flow

In some cases, a message flow indicates the possibility of message communications, not the
certainty of it. For example, a User task with an outgoing message flow means the task may
send the message, not must send the message. If you want to indicate the certainty of sending
or receiving of a message, you should use a Message event or a Level 2 Send or Receive task.

Pool
The pool shape is a rectangular box (Figure 4-20). It can be either horizontal, with the label
boxed off on the left, or vertical, with the label boxed off on the top. (Boxing off the label
distinguishes a pool from a lane, which does not have its label boxed off.) A pool containing
flow elements, called a process pool or white-box pool, should be labeled with the name of the
process. An empty pool, called a black-box pool, should be labeled with the name of a business
entity or role such as Customer or Seller.

Chapter 4. The Level 1 Palette | 47

Figure 4-20. Black-box pool (top) and process pool (bottom)

In BPMN 1.2, a pool represented a container for a process. BPMN 2.0 changed the definition in
a way that muddies the waters but does not fundamentally affect how pools are used in
practice. Effectively, a pool is still a container for a single process, but technically it represents
a participant in a collaboration. That might suggest you cannot use a pool in a diagram unless
you have two or more of them exchanging message flows, and until the end of the BPMN 2.0
drafting period, that was indeed the case! But common sense prevailed at the end. A
diagram may show only a single process, enclosed in a pool. In the semantic model, it is a
defined as a collaboration with a single participant… the BPMN equivalent, I guess, of the
sound of one hand clapping.

In the XML there is no pool semantic element; there is only participant. Pool just means a
shape in the graphical model that points to a participant in the semantic model. But since a
participant can reference just one BPMN process, not more than one, it is effectively equivalent
to a process. A black-box pool is a participant that has no process reference.

Although I advocate labeling a process pool with the name of the process, it is not uncommon
to see BPMN diagrams in which process pools are labeled with the name of an organization,
such as a company or department. I disagree with this practice for several reasons:

1. There is no other BPMN element in the diagram where the process name appears.

2. A collaboration diagram could contain two internal processes, interacting via
message flows. Such a collaboration requires two participants, each referencing a
different process, although the members of both participants may be exactly the same
people. We’ll see an explicit example of this in Chapter 8.

3. Labeling a process pool with the name of an organization, such as a department,
encourages splitting a single process into multiple independent processes. There are
occasions where modeling an end-to-end business process as multiple BPMN
processes is appropriate, but most of the time it is best to model departments or other
organizational units as lanes within a single process, not separate pools.

48 | Chapter 4. The Level 1 Palette

If a diagram depicts only a single process with no message flows, it is not required to draw a
pool at all. However, in any diagram that shows a collaboration between multiple processes,
at most one of them may omit the pool shape. In BPMN 1.2, that pool was considered
“invisible”; in BPMN 2.0 the pool does not exist in the model.

In hierarchical modeling, where a child-level expansion is drawn on a separate hyperlinked
diagram, it is best to omit a pool shape enclosing the child process level. (Some tools
automatically draw a pool in the child level if you want to show lanes, but this a tool issue not
a BPMN requirement.) If you enclose the child-level expansion in a pool, its label should
match that of the top-level process; it should not be labeled with the name of the subprocess. In
the tool I use for my BPMN training, even if you give the same names to the parent and child-
level pools, two separate participants will be created in the XML unless you tell the tool they
represent the same entity. It’s easy to do, and it makes the XML come out right… but it’s also
easy to forget. We’ll come back to this in the BPMN Implementer’s Guide section of this
book.

Lane
In BPMN 2.0, a lane (Figure 4-21) is an optional subdivision of a process level. Like pool, a
lane is drawn as a rectangular box, but its label – at the left for a horizontal lane or at the top
for a vertical lane – is not boxed off. BPMN allows you to draw lanes without enclosing them
inside a pool (although some tools do not).

Lanes are a holdover from traditional swimlane flowcharts, where they were used to associate
process activities with particular actors – departments or roles. They are still typically used
for that purpose, but BPMN 2.0 actually allows them to be used for any type of categorization,
for example value-adding vs. non-value-adding activities. You can even have multiple sets of
categorizations, called lanesets, in the semantic model, all associated with the same process
level. One laneset might indicate the performer role, for example, and an alternative one
might indicate the responsible department. A particular diagram in the graphical model may
reference just one of the lanesets.

Figure 4-21. Lanes

BPMN 1.2 was vague about how lanes in a child-level diagram relate to lanes in the parent
level, but it is clearer in BPMN 2.0. Each laneset definition applies to a specific process level.
If you want to reference the same lanes in parent and child-level diagrams, you need to
replicate the laneset at both levels of the model.

Chapter 4. The Level 1 Palette | 49

A lane in a process level may contain a child laneset. The child lanes, also called sublanes, are
drawn nested inside its parent lane. For example, a parent lane might represent a department,
and sublanes roles within that department.

If you use lanes in a process level, all its flow nodes must be associated with one lane or
another. You may not depict some in a lane and others not in a lane. BPMN has no rules
about sequence flows crossing lane boundaries.

Data Object and Data Store
One of the biggest changes from BPMN 1.2 to BPMN 2.0 concerns the modeling of data and
data flow. In BPMN 1.2, data objects were considered artifacts, diagram annotations with no
semantics or rules. In BPMN 2.0, data object was upgraded to a first-class semantic element,
along with a new element, data store. Even though both data object and data store are part of
the Level 1 palette, the new definitions treat data from the perspective of a developer doing
executable process design.

The data object shape looks like a dog-eared page (Figure 4-22, left). Besides the name of the
data object, the label may indicate its state by enclosing it in square brackets. The data store
shape (Figure 4-22, right) is a cylinder, similar to the symbol for a database or storage device.

Figure 4-22. Data object and data store

A data object is really a programming construct. It represents a local variable in a process level,
a piece of temporary data stored inside the process instance while it is running. Its value is
visible to other elements in the same process level or one of its children – for example, it can
be passed to the input of a process activity or be tested by a gateway condition – but is
invisible to a sibling or parent-level element. And when the process level (top-level process or
subprocess) ends, the data object goes away. In other words, it works like a variable in a
computer program, not what a modeler normally means by “data”.

A data store represents persistent data, such as information stored in a database or business
system. It can be queried or updated both by the process and by entities outside the process.
It does not disappear when a process level, or the process as a whole, ends. It is more often
what a process modeler means by “data”.

Data object and data store connect to other model elements through data associations, dotted
line connectors that look a bit like message flows except the lines are dots not dashes and the
arrowhead is a V, not a triangle. With data objects, one end of the data association is
connected to an activity or event, and the other to the data object. In that case, the data
association represents a mapping between that variable and a data input or output of the
activity or event. The mapping may be a simple copy or a transformation, but only the data
association connector and label are visible in the diagram.

50 | Chapter 4. The Level 1 Palette

Data flow within a process is thus represented by a data output association from an activity or
event to a data object, followed by a data input association from the data object to another activity
or event (Figure 4-23, right). You are allowed to use a non-directional data association (drawn
without the arrowhead) between the data object and a sequence flow connecting the source
and target objects as a “visual shortcut” (Figure 4-23, left). In other words, the semantics are
those of the right diagram, even if you draw it as on the left. (Not all BPMN tools will do this
for you; best to model it as in the right-hand diagram.)

Figure 4-23. The left diagram is considered a “visual shortcut” for the data flow in the right
one.

A data store represents a single unit of information stored in a system, such as a database
record, not the system or database as a whole. Data association directed into the data store
represents an update operation, while data association directed out of the data store represents
a query. In Figure 4-24, the task Process Order updates the account balance in the data store
Customer Account.

Figure 4-24. Data store represents persistent data accessible to the process.

The BPMN metamodel imposes one more bit of complexity here. The data store itself is a root
element in the semantic model; it is defined outside of any particular process. The element
drawn in the diagram is actually a data store reference, which is contained within a process
level (otherwise you could not connect a data association to it). If you interact with the same
data store from two different parts of your model you may need to draw separate data store
references. But the BPMN tool should hide this complexity from the modeler.

Documentation, Text Annotation, and Group
The BPMN model as a whole and most of its individual elements each contain a documentation
element in the XML, into which you can stuff as much information as you please, either
directly or via links to external documents. These documentation elements are part of the
Descriptive subclass (i.e., Level 1), meaning any tool that claims conformance is expected to be
able to import and display them. However, documentation has no associated graphical
element. In other words, it doesn’t show up in the diagram.

Chapter 4. The Level 1 Palette | 51

If you want to put an annotation in the diagram itself, use text annotation, indicated in the
diagram by a square bracket shape framing a bit of user-entered text (Figure 4-25). Text
annotations are not supposed to be free-floating but attached to some graphical element via a
non-directional association. Association looks the same as a data association without the
arrowhead. Text annotation and association are artifacts, meaning supporting information
that does not affect process flow.

Figure 4-25. Text annotation and association

Finally, there is Group, drawn as a rounded rectangle with a dot-dash border (Figure 4-26).
Group is also an artifact. Essentially it is just a box drawn around a set of elements in the
diagram to indicate some relationship between them. Officially, the spec says this: “The
grouping is tied to the CategoryValue supporting element. That is, a Group is a visual
depiction of a single CategoryValue. The graphical elements within the Group will be
assigned the CategoryValue of the Group.” However, I have never seen this CategoryValue
mechanism used in practice. If you are inclined to use it at all, you should consider Group
just a visual highlighter in the diagram.

Figure 4-26. Group

53

CHAPTER 5

5. The Method

We’ve now covered the full Level 1 working set. There is a lot more left to discover at Level 2,
but we know enough already to handle the majority of process modeling requirements. So
we are now ready to discuss the Method.

The Method is not part of the BPMN specification. OMG proudly declares that BPMN has no
official methodology, since it is intended for a wide variety of uses by people with divergent
interests and skills. But in my experience, most people using BPMN are trying to do the same
thing – create a non-executable process diagram that conveys the process logic in a meaningful way.
Whether they are simply trying to document an as-is process or create business requirements
for an automated to-be solution, the attributes of a “good BPMN” model are pretty much the
same. The Method is an attempt to standardize the structure of such a model in order to
maximize shared understanding of the diagram. If everyone in the organization structures
their process models according to the same principles, they are more likely to understand
models created by others.

Goals of the Method
The Method is a recipe for going from a blank page to a complete BPMN model in a
consistent, well-structured way. It is based on a hierarchical modeling style that reveals
important basic facts about the process as a whole from the top-level diagram, and lets you
add as much detail as you want in child-level diagrams. It leverages label-matching as an aid
to tracing the process logic from the top level diagram down to the lowest level of detail, even
if the hyperlinking of the “live” model in a tool is not available. The Method is prescriptive,
and it will help get you started on the right foot. However, following my Method to the letter
is less important than establishing a prescriptive methodology of your own and deploying it
consistently across your organization.

Let’s review once more the overarching principles of “good BPMN”. They include:

• Completeness. The essential elements of the end-to-end process logic should be
captured in the diagram, including how the process starts, its distinct end states,

54 | Chapter 5. The Method

what the instance represents, and its interaction with external entities such as the
requester, service providers, and other internal processes.

• Clarity. Details of the process flow – which activities are conditional, which are
performed in parallel with others, how various exceptions are handled – should be
unambiguous from the diagram alone, even to those unfamiliar with your process or
even your terminology. That means using label-matching to make the logic traceable
from the top level down in a hierarchical model, even when working from paper
copies.

• Shareability between business and IT. BPMN as a language can be shared by
business users, business analysts, and developers. But we’re aiming higher. We
want to create individual BPMN models that can be shared between business and IT.
That’s not easy. It demands that business users and business analysts apply more
rigor and attention to detail than they may be used to, and it demands that
developers describe process activities in terms of the business functions they perform
rather than their specific implementation.

• Structural consistency. Given the same set of facts about how the process works, all
modelers ideally should create more or less the same process model, at least the same
overall structure. If you can achieve that kind of consistency across your
organization, it greatly enhances the ability to understand models created by others.

These principles of “good BPMN” are the goals of the Method.

Hierarchical Top-Down Modeling
The Method describes a hierarchical top-down modeling style. But what does that mean, and
why do I recommend it?

Hierarchical means graphically representing the end-to-end model as a set of linked process
diagrams representing distinct process levels. That is, a collapsed subprocess in the parent-
level diagram is expanded in a separate child-level diagram. Collapsed subprocesses in that
child level may be further expanded in yet another diagram with a “grandchild” relationship
to the first. A single top-level diagram stands atop the hierarchy, and the number of levels
nested below it is unlimited.

In contrast, a flat process model places all steps of the process, even the finest details, in a
single diagram. If subprocesses are used at all – and sometimes they are not – they are shown
expanded “inline,” as described in Chapter 3. A flat end-to-end process model rarely fits on a
single printed page, unless output by a large format plotter. Depending on the tool, it may be
possible to print it in several Letter/A4-size pieces and tape up the mosaic on a wall. There is
also a BPMN element, called a Link event pair, that can be used to split a single process level in
the semantic model across multiple diagrams. These diagrams are siblings; they do not have
a parent-child relationship.

Chapter 5. The Method | 55

Hierarchical modeling means the semantic model is represented visually by multiple
diagrams. A diagram in BPMN is equivalent to a logical page (even if more than one page of
paper is required to print it). The diagrams are not separate models, just separate views of a
single semantic model.

A single semantic model means a single process definition describes the entire process end-to-
end. In fact, the semantic model by itself does not distinguish between hierarchical and flat
representations; the XML is identical. The difference between them is in the graphical model,
the diagram layout information. We’ll talk more about the graphical model in Chapter 17.

Top-down means beginning by understanding the end-to-end process as a whole, enumerating
its major steps in a high-level map, and then arranging those steps in a top-level process diagram
that fits on a single page. From there you proceed to drill down to define the internal logic of
each high-level map activity in a child-level diagram, revealing only as much detail as required
for your purpose. Top-down forces the modeler to start with the big picture, adding only the
details needed for the immediate purpose. This stands in contrast to the traditional approach
in which the process definition is gradually built up from the bottom based on SME
interviews: First we do this, and then they do that, and then…. That approach can get bogged
down in unnecessary detail, and may even lead to wasted effort modeling details that are not
even part of the process.

Top-down usually implies a hierarchical modeling style, whereas bottom-up often leads to
flat models. I favor BPMN tools, like Process Modeler for Visio or native Visio Premium 2010,
that naturally support the hierarchical top-down approach by automatically creating a linked
child-level diagram from a collapsed subprocess.

End State
A key concept in the Method is the notion of end state. You can search the BPMN 2.0
specification from cover to cover and never see that phrase once. Actually it’s not a BPMN
term, but a common sense business term. Recall that an activity in BPMN is an action
performed repeatedly in the conduct of business. Each instance of the activity has a well-
defined start and end. When each instance of the activity is complete, you could ask the
question, how did it end? Did it complete successfully or in some exception condition?

Perhaps the activity has more than one exception end state, or possibly more than one success
end state. How many are there? That’s up to you. How many do you want to distinguish? If
the flow branches following the activity, usually the activity end state determines which path
is taken. If there are three different possible next steps in the process, then you need to
distinguish three end states. A gateway following the activity then tests the end state. Did
the activity end in state A, B, or C? If A, go here next; if B, go there next; if C, go to that one
next. If the subsequent flow is the same no matter how the activity ends, then you only need
one end state.

If the activity is a task, its end states are invisible in the model. However, they may be implied
by the labels on the gateway following the task. For example, a gateway Credit OK? implies

56 | Chapter 5. The Method

the end states Credit OK and Credit Not OK. However, if the activity is a subprocess, you can
make its end states visible in the diagram by defining a separate end event for each distinct end
state, and labeling each one with the name of the end state. This technique is not required by
the BPMN spec, but it is central to the Method because it makes the process logic traceable
from the top level down.

If the subprocess has two end states, I recommend labeling the gateway as a question, and
labeling its gates yes and no. The gateway label (minus the question mark) should match the
label of one of the subprocess end states. That means that instances following the yes path out
of the gateway in the parent-level diagram are the same ones that reach the end event with
the matching label. Instances following the no path are those that reach the other end state.
What if there are three end states? In that case, I recommend matching the label of each gate
of the gateway immediately following the subprocess with the label of one of the end events.

Multiple end states do not always imply exceptions. They could just signify some aspect of
the instance that affects the subsequent flow. For example (Figure 5-1), you might have an
activity Determine customer type that identifies a buyer as either a premier customer or a
regular customer, followed by a gateway labeled Premier customer? with yes and no gates
leading to separate fulfillment activities. If Determine customer type is a subprocess, it should
have two end events, one of which is labeled Premier customer. Any process instance reaching
the Premier customer end state will, by this convention, always follow the yes path out of the
gateway, and any instance reaching the other end state will follow the no path.

Figure 5-1. Distinguishing subprocess end states as separate end events aids top-down
traceability.

All this adding of end events and attention to labeling might seem at first like needless bother.
Modelers often assume that everyone that will ever look at their BPMN diagram is already
familiar with the process and the terminology used in the diagram. However, that is not
always the case. Matching end state and gateway labels creates a persistent visual link
between parent and child-level diagrams that makes the logic traceable from the top level
down even if the viewer is unfamiliar with the process or its terminology.

Step 1. Determine Process Scope
Top-down modeling starts with agreeing on the scope of the process, where it starts and ends.
The process does not have to be customer-facing, what we sometimes call end-to-end. It

Chapter 5. The Method | 57

could be an internal function performed entirely within a single department. The important
thing is that there is agreement on the scope before modeling begins. You don’t want your
modeling efforts, after weeks of interviewing subject matter experts and other stakeholders, to
break down in a dispute over when the process is actually complete. That is often a difficult
question to answer, but you want to have those discussions before diving into the process
details.

In this first step of the Method, I am using the term “process” a bit loosely, since it possibly
could require more than one BPMN process. We’ll discuss that more in Chapter 8. But it
always means a repeated action with a well-defined start and end, not a continuously ongoing
business function. The key questions for now are these:

• How does the process start? For example, is it on request, either from an external
entity or internal task performer, or is it a regularly scheduled process?

• What determines when it is complete? Once an instance is complete, there are no
further actions on it possible within this process definition. Those would have to be
part of a separate process model. For example, if your Order process ends upon
sending the invoice, activities related to collection of payment are not part of this
process.

• What does each instance of the process represent? Normally this is related to the
start event, as we have discussed. If the start event represents a request, then the
instance normally represents the fulfillment of that request.

• Are there different ways that the process could end? In other words, does the
process have more than one end state?

As we have seen, an Order process could fail because of problems with the buyer’s credit, or
the ordered item is out of stock, or for various other reasons. Should we say that such a
process has two end states, or more than two? There is no right or wrong answer. It comes
down to how many distinct end states do you want to identify for analysis purposes or
possibly monitor in actual operation? If a possible end state occurs very infrequently or is not
worth distinguishing from some other end state, don’t represent it in the model. BPMN is
there to serve you in your modeling needs, revealing as much or as little detail as you require.

There is no process diagramming to be done in Step 1. You have completed it once you have
general agreement among your stakeholders as to the answers to the four questions above.

Scenario: Car Dealer Order-to-Cash
To illustrate the Method, we will use a process familiar to many of you from the buyer’s
perspective, purchasing a new car. But here we will imagine it from the car dealer’s
perspective, the seller’s order-to-cash process. Let’s go through the four questions one by one.

When does this process start? We use this example in my BPMN training, and a student may
suggest that it starts when a customer walks into the showroom. But I don’t think that is
correct. Certainly there are sales activities that occur when the customer walks into the

58 | Chapter 5. The Method

showroom, but they are not part of the order process. There is no “order” when the customer
first walks in. In fact, there may not even be a “process” in the BPMN sense.

Then a student typically offers that it starts with an order. I agree with that. OK, what is an
order in that context? What form does it take? What information does it include? Does any
money change hands?

As I write this, I am in the process of buying a new car myself, so I can tell you exactly what it
meant in my case. An order is an agreement from a particular buyer to buy a particular car,
or a detailed specification for a car – make, model, color, and options – for an agreed price. If
that car is not in the dealer’s possession, it could be acquired by trade with another local
dealer or custom-ordered from the manufacturer. In any case, the buyer’s agreement is
always with the dealer, and what we are concerned with is the dealer’s order-to-cash process.

At the time of the order, a small refundable deposit might be required in order to reserve the
car or to secure the purchase from another dealer or the factory. However, the process is not
complete until the full amount of the purchase is paid and the buyer receives the car. For a
new car, that usually occurs days or weeks later.

An instance of this process is a single order. But what if the buyer purchase two cars? Is that
one instance or two? It depends. If this is considered a single financial transaction – there is a
single closing with payment and delivery of both cars together – then it is one instance. If the
two cars are treated as separate financial transactions with possibly different closing dates,
then it is two instances. It is best to consider and resolve such “gray areas” when scoping the
process to be modeled.

Successful closing of the transaction represents the normal, successful end state of this
process. Let’s call it Transaction complete. But are there other end states we want to consider?
In this case there are. Here we only want to count those exceptions that occur with sufficient
frequency that they affect the overall business. It could be that the customer is unable to
secure financing. In that case the process will complete in an exception end state we call
Financing unavailable. And there is another exception that could occur when the car must be
ordered from the factory. It could turn out that the projected delivery date is later than
estimated at the time of the order, and the buyer cancels the order. We’ll call that end state
Delivery date unacceptable.

We could consider these two exceptions just technical variations of a single end state,
Transaction failed. But our dealer in this case wants to distinguish them because they suggest
problems in separate parts of the organization. Financing unavailable suggests a potential
problem in the Finance department, since an order should be initiated only if the buyer is
thought to be credit-worthy. Delivery date unacceptable suggests a potential problem in the
Sales department, since the actual delivery date for the ordered vehicle was not estimated
properly at the time of order. Identifying these as distinct end states implies we want to
understand their cause and handling as individual exceptions. For example, we might want
to think about specific improvement actions that could reduce their frequency of occurrence,
or actions that could reduce their impact on the business when they occur.

Chapter 5. The Method | 59

Step 2: The High-Level Map
The next step in the Method is to define the High-Level Map. This is simply an enumeration
of the major activities of the process, ideally ten or fewer in order to represent the top-level
BPMN diagram, which is generated from the high-level map, on a single page. In the first
edition of this book, I drew the high-level map as a linear sequence of BPMN activities, but
now I think it might be better simply to think of it as a list. We will turn it into a top-level
BPMN diagram in the next step of the Method.

Since the high-level map is just a list of the process’s major activities, this step should be very
simple. In practice, however, you will probably spend a while on it. The activities in the map
are not a sampling of process activities, with more details to be added in between them later
on. It is better to think of them as containers into which those details will be added.

The steps in the high-level map must be “activities” in the BPMN sense, meaning actions
performed repeatedly, each with a well-defined start and end. Moreover, the instances of each
activity in the high-level map must be aligned, having one-to-one correspondence with each
other and with the process instance.

Other factors help guide the selection of high-level map activities. Remember that in BPMN,
the start of one activity is usually triggered by the completion of a previous activity, not at
reaching some point in the middle of the activity. Also, if the governance of the process is
distributed across multiple parts of the organization, steps in the high-level map should
ideally match up with those governance boundaries. And, of course, we would like to restrict
the count of high-level map activities to ten or less. These considerations guide definition of
the high-level map, but it will require considerable time and discussion with process
stakeholders.

Finally, when the outcome of an activity affects the subsequent path of the process instance,
we need to think about the end states of each activity in the high-level map. End state names
should be brief but descriptive.

Scenario: Car Dealer Order-to-Cash
In our car dealer order-to-cash scenario, the Owner meets with Sales Manager, the Service
Manager, and the Finance Manager to come up with the high-level map. They collectively
agree on the following activities:

• Finalize order. There are slight differences in procedure and price depending on
whether the car is available from dealer stock, acquired by trade with another dealer,
or custom ordered from the factory. This activity is governed and performed by the
Sales department. End states: Reserved from stock; Dealer trade; Order from factory.

• Acquire car from local dealer. This activity is conditional, performed in some fraction of
process instances, not all of them. This activity is also governed and performed by
the Sales department. End state: Car received.

60 | Chapter 5. The Method

• Acquire car from factory, also conditional and performed by Sales. If the factory
delivery date is later than the one estimated at the time of Finalize Order, the customer
could cancel the transaction. End states: Car received; Order cancelled.

• Prepare car for delivery. This activity includes dealer-installed options and cleaning up
the car for delivery to the customer, regardless of whether the car comes from stock,
dealer trade, or factory order. It is governed and performed by the Service
department. End state: Ready.

• Arrange financing, performed by the Finance department. It can start as soon as
Finalize order is complete, running in parallel with acquiring and preparing the car.
End states: Financing confirmed; Financing unavailable.

• Close and deliver. This activity, performed by the Finance department, completes the
financial transaction and delivers the car and registration materials to the customer.
It may not start until both Arrange financing and Prepare car for delivery are complete.
End state: Transaction complete.

• Handle order cancellation. This activity is only performed when the order is cancelled
before the closing. It is performed by the Finance department. After handling the
cancellation, we still want to distinguish the process-level end states. End state:
Delivery date unacceptable, Financing unavailable.

Step 3: Top-Level Process Diagram
Now that we have our high-level map, we can turn it into a top-level BPMN diagram. The
process starts on request from the customer, so we will use a Message start event, Receive
order. Each high-level map activity becomes a subprocess in the diagram. In the hierarchical
modeling style, we will later expand each of these activities in hyperlinked child-level
diagrams to show the details of each step.

In the Method and Style approach, each activity that is conditional in the high-level map will
be drawn following a gateway that tests the end state of the preceding activity. If the gateway
has two outputs (gates), we label the gateway as [endstate1]?, where [endstate1] is the name of
one of the end states of the preceding activity, and label the gates yes and no. If there are
more than two gates, we simply label the gates themselves [endstate1], [endstate2], etc. We
don’t need a gateway to merge alternative paths; just connect the sequence flows directly into
the downstream activity.

If an activity is performed concurrently with other activities in the high-level map, we can split
the flow into parallel paths either using a parallel gateway or simply two sequence flows out
of the preceding activity. If a downstream activity requires completion of two or more
parallel activities, we must use a gateway join.

In this way, construction of the top-level BPMN diagram from the high-level map becomes a
fairly mechanical exercise.

Chapter 5. The Method | 61

Scenario: Car Dealer Order-to-Cash
We’ll start by considering only the “happy path” of the process, leading to the successful
Transaction complete end state, and ignoring the exception end states of Order car from factory
and Arrange financing. The result is shown in Figure 5-2. Since Finalize order has three end
states, we don’t label the subsequent gateway as a question, but instead match the name of
each gate to an end state. Two sequence flows out of Finalize order means both paths are
initiated in parallel. The AND-gateway join means both Prepare car for delivery and Arrange
financing must be complete before Close and Deliver can start.

Figure 5-2. Top-level BPMN diagram, happy path

That was the happy path. Now let’s add the exception paths. We want to show all the end
states of the process as separate end events in the top-level diagram, each labeled with the
name of the end state. The result is shown in Figure 5-3.

Figure 5-3. Top-level BPMN diagram, including exception paths

Recall that the exception end state Delivery date unacceptable is the consequence of an exception
in Order car from factory. If that exception occurs, we need to perform Handle cancellation and
then end the process. Because there is another process path in parallel to this one, we need to
use a Terminate end event at Delivery date unacceptable. Otherwise, the financing path would
continue and wait forever at the join.

The same thing applies with Financing unavailable. If Arrange financing does not end in
Financing confirmed, we need to abort the process by performing Handle cancellation and then
ending in a Terminate. Otherwise the Prepare car for delivery path would hang at the join.

62 | Chapter 5. The Method

We could have drawn lanes in the top-level diagram, but it makes the diagram slightly more
convoluted and tedious to make “pretty.” You can see this from Figure 5-4, which is
semantically equivalent to Figure 5-3. And we have not added any message flows yet! It is
often better to omit lanes in the top-level diagram and just put them in the child-level
diagrams.

Figure 5-4. Top-level diagram showing pool and lanes

Step 4: Child-Level Expansion
The top-level diagram tells you how the process starts and ends, but it reveals little about the
internal details. For that you need to show the child-level expansion of each top-level activity.
In hierarchical modeling, each is drawn on a separate diagram, hyperlinked to a collapsed
subprocess in the top-level diagram. Good BPMN tools create those hyperlinks
automatically.

The child-level expansion must have a None start event. Activities in the child-level
expansion can include collapsed subprocesses, which would then be expanded in another
diagram two levels down from the top. You may either enclose the child-level process in a
pool or not. If you draw the pool, it must be named the same as the pool of the parent level,
i.e., the name of the process. You may either include lanes in the child-level diagram or not.
Lanes are defined independently at each process level.

Remember to create a separate end event for each end state of the high-level map activity
identified in Step 2, and label it with the name of the end state. If you want to modify your
list from Step 2, it is OK to do that here. Just make sure that if a subprocess is followed by a
gateway, the gateway (or gate) label matches the label of one of the subprocess end states.

Chapter 5. The Method | 63

Scenario: Car Dealer Order-to-Cash
To illustrate, we’ll consider here the first activity only, Finalize order. We know that it starts
upon receipt of an order, a document from the customer that identifies the buyer, the car (or
specifications for a car), and the agreed price. And we know that it could end in one of three
states: Reserved from stock, meaning it is available from dealer inventory; Dealer trade, meaning
we will acquire it from a local dealer; and Order from factory, meaning we will custom order it
from the manufacturer. The child-level expansion must have flows leading to those three end
events in order to be consistent with the parent-level diagram.

Figure 5-5. Child-level expansion, Finalize Order

Step 5: Add Message Flows
In Chapter 3 we added the customer request and final status message flows before we did the
child-level expansion, and I still often do it that way. But here I created the child-level
expansion first in order to talk about the general issue of showing “collaboration”, i.e.,
message flows, in your BPMN models.

Message flows are not required in BPMN. The spec says you can draw them or not, as you
choose. However, Method and Style says you should draw them, because they add valuable
information to the diagram. They show how your process interacts with the customer, service
providers, and other internal processes. In other words, they provide valuable business context
for the process.

The downside is that message flows also add visual clutter to your diagrams. Through years
of BPMN training I have found that students with an “architectural” inclination love them,
but others may find them annoying. The solution that I use in training is to include them in
the model, but allow them to be hidden from users who don’t want to see them. This is easy
to do in Visio and similar tools that support drawing “layers,” but it may not be possible in
other tools.

Message flows always connect to either an activity or a Message event in the process. Usually
the other end of the message flow is connected to the boundary of a black-box pool. Even if
that pool represents another internal process, it is best to represent it here as a black-box pool.

64 | Chapter 5. The Method

(In the model of the other process, this process becomes a black-box pool.) In any case, you
can’t simply leave one end of the message flow dangling in space; the XML schema demands
a valid connection at both ends.

In some cases, message flows indicate the possibility of a message rather than the certainty of it.
In other words, a message flow out of a User task does not mean that the message must be
sent but that it could be sent. And similarly, a message flow into a User task does not require
the arrival of the message in order to complete the task. (In the Level 2 palette, we’ll see other
task types, Send and Receive, that do require the sending and receiving, but we are not there
yet.) Also, if there are multiple message flows connected to an activity, their order of
occurrence is ambiguous. Sometimes it is implied by the label – for example, an Info Request
message would generally precede Info Response – but in general you can’t tell.

In hierarchical models, a basic Method and Style principle is that the message flows should be
consistent between parent and child levels. If a collapsed subprocess at parent level has three
outgoing and two incoming message flows, then the child-level expansion should have the
same number, and their labels should match the parent diagram as well. This is another
example of top-down logic traceability. In the parent-level diagram, you cannot tell by
inspection the order of those messages, or whether some of them are conditional. You get a
much better idea from the child-level expansion, where those five messages are replicated.

Consistent application of this principle means that all the message flows in the entire process
model are present in the top-level diagram, and that can be quite a few. If they don’t all fit,
it’s acceptable to use visual shortcuts like combining multiple message flows into one, with
appropriate labeling, but it’s best to show them all if you can.

Scenario: Car Dealer Order-to-Cash
Figure 5-6 shows the top-level diagram with message flows. You see that while they make the
interactions with other entities visible, they also add visual clutter. Take a look at Order Car
from Factory. There are four message flows here, but their order is not obvious from the top-
level diagram. By replicating them in the child-level expansion, the message order, along
with the rest of the process logic, becomes immediately apparent (Figure 5-7).

Chapter 5. The Method | 65

Figure 5-6. Top-level diagram, with message flows

Figure 5-7. Order car from factory, child level, with message flows

66 | Chapter 5. The Method

In Microsoft Visio, you can selectively suppress the display of message flows or any other
diagram element by placing them in a hidden diagram layer. This is far better than creating
separate high-level and detailed models and trying to keep them in sync. Just add a new
layer, select the shapes and connectors to put in that layer (Figure 5-8), and set the properties
of that layer to be invisible or, by coloring them light gray, barely visible. In Figure 5-9, only
the Customer pool and message flows connected to it are left in the visible layers.

Figure 5-8. Placing selected shapes in an invisible Visio layer

Figure 5-9. Top-level diagram with Factory and Lender collaboration hidden

Chapter 5. The Method | 67

Method Recap
We’ve now covered the Method. It’s pretty simple, really. Let’s review the steps:

1. Agree on process scope, when it starts and ends, what the instance represents, and
possible end states.

2. Enumerate major activities in a high-level map, ten or fewer, each aligned with the
process instance. Think about possible end states of each activity.

3. Create top-level BPMN diagram. Arrange high-level map activities as subprocesses
in a BPMN process diagram, with one top-level end event per process end state. Use
gateways to show conditional and concurrent paths.

4. Expand each top-level subprocess in a child-level diagram. If a subprocess at parent
level is followed by a gateway, match subprocess end state and gateway (or gate)
labels.

5. Add business context by drawing message flows between the process and external
requester, service providers, and other internal processes, drawn as black-box pools.
Message flows connecting to collapsed subprocess at parent level should be
replicated with same name in the child-level diagram.

6. Repeat steps 4 and 5 with additional nested levels, if any.

69

CHAPTER 6

6. BPMN Style

The Method helps you establish consistency in the structure of your BPMN models, but by
itself it does not ensure that your diagrams can stand on their own, revealing the process logic
clearly and completely without the need for supplementary documentation. The rules of the
BPMN specification won’t do that, either. Maximizing shared understanding of BPMN
diagrams requires application of additional conventions that I call BPMN style.

In my BPMN classes, I used to teach BPMN style as recommended “best practices,” since
these conventions, after all, are not required by the BPMN 2.0 specification. But, like
childhood admonitions to “eat your vegetables,” best practices have a way of being ignored
by modelers, especially when they are in a hurry. So now I have distilled the elements of
BPMN style to a set of rules – I call them style rules – that can be used to validate models in a
tool. Students in my training, for example, can validate against them directly in Process
Modeler for Visio from itp commerce13, and I have made style rule validation available

through my own online tool14. Before students in my training can submit their certification
exercises for approval, I now insist that they validate the diagrams against both the official
rules and the style rules, and fix all the errors. This has made a huge difference in both the
quality of the submissions and the speed of student learning.

In this chapter we’ll look at some of the basic principles of BPMN style and the important
style rules applicable to the Level 1 palette.

The Basic Principle of BPMN Style
The basic principle of BPMN style is simply this: The process logic should be unambiguous from
the diagram alone. That’s what we mean by “good BPMN.” Remember “process logic” is not
the internal logic of a process task. Task logic is important, of course, but BPMN has little to

13 Currently available only via BPMessentials. See www.bpmessentials.com for more information.

14 See www.bpmnstyle.com.

70 | Chapter 6. BPMN Style

say about it. Process logic is the logic of the sequence flows: When an activity ends, what
happens next, under what conditions? It is about the sequencing of process activities, not the
inner workings of individual tasks. We can show the inner workings of an activity by
modeling it as a subprocess, but BPMN cannot “look inside” a task.

In the diagram we have only a few visual elements available to convey the process logic: the
basic shapes, their internal icons and markers, border style, diagram placement, and – last but
not least – their labels. BPMN style depends on using those elements to the fullest. Labeling is
a particularly important aspect of BPMN style, but many modelers are uncommonly stingy
with labels. Style rules not only require labels for certain diagram elements, but may require
matching the label text with the label of another diagram element. In the XML, BPMN uses
pointers to element IDs to link them together, but these IDs and pointers don’t show up in the
diagram; only the labels do.

Figure 6-1. A “valid” but meaningless process

It may surprise you to know that Figure 6-1 is valid according to the BPMN 2.0 specification.
It breaks no official rules, but it provides no useful information. The activities are not labeled.
The gateway, its gates, and the end states are similarly unlabeled.

Figure 6-2. Style rule violations in Figure 6-1

That is why style rules are important. Figure 6-2, the validation report from the itp commerce
tool, lists six violations from this simple diagram alone, all related to labeling. (In the tool,
each violation is hyperlinked to the shape it references.) Like spelling and grammar checking
in word processing, validation – including style rule validation – is something every modeler
should perform on a regular basis. Many violations do not imply ignorance of the rules, but
simply a hurry to finish.

Of course, the diagram must also obey the official rules of the BPMN spec. That’s obvious,
and even more important than following the style rule conventions. But that is not as easy as
it seems. For one thing, the spec does not enumerate its rules. It has no Appendix where they
are all listed and numbered. Instead, the rules are sprinkled throughout the narrative of this

Chapter 6. BPMN Style | 71

508-page document, where they refine and override various other requirements imposed by
the BPMN metamodel (UML class diagrams) and its associated XML schema. In a sense,
BPMN 2.0 has three sources of truth. They are intended to be aligned, but that is not always
the case. Each tool, therefore, must make its own interpretation of the rules.

In any case, if you are serious about process modeling, you should avoid any BPMN tool that
cannot validate your diagrams against some interpretation of the rules of the BPMN
specification. Fortunately, most BPMN tools offer such validation. Good BPMN always starts
with adherence to the rules of the spec.

Style Rules
A number of style rules are basic principles of composition, while others are specific rules of
usage supporting validation in a tool. The important style rules applicable to Level 1
modeling are listed below.

1. Use icons and labels to make the process logic clear from the printed diagram.

Maximize use of BPMN’s visual elements, including icons, markers, and especially labels.
Label all activities, even subprocesses. Label end states. Label the sequence flows out of an
exclusive gateway. Label pools and message flows. Identify task types and event triggers
with icons. If some aspect of the process logic cannot be conveyed unambiguously from the
BPMN elements alone, use a text annotation.

2. Make models hierarchical, fitting each process level on one page.

This principle essentially says use the Method or an equivalent methodology that results in a
hierarchical model structure. The top-level diagram should capture the end-to-end process on
one page and show its interactions with external entities using message flows. Each
subprocess in a process level should be expanded in a separate child-level diagram, and this
nesting can go on as deep as you’d like. With hierarchical modeling, as child-level detail is
added, no change is needed to the parent level diagrams.

3. Use a black-box pool to represent the Customer or other external requester or service
provider.

A common beginner mistake is to insert activities in the Customer or other requester pool
(Figure 6-3, left).

72 | Chapter 6. BPMN Style

Figure 6-3. Customer and other external participants should be modeled as black-box pools

It’s a mistake because you don’t know the logic of the Customer’s process. Submitting the
order is not the end of the interaction. Other messages may be exchanged downstream –
confirmation, invoice, failure notice, perhaps other notifications and requests. You cannot
anticipate the Customer’s internal process for all of that, and you are not allowed to connect
message flows to the boundary of a process pool. The solution is to make the Customer a
black-box pool.

4. Begin customer-facing processes with a Message start event receiving a message flow
from the Customer pool.

Figure 6-4. Message start event means the message instantiates the process

A process that is initiated by request should be modeled with a Message start event that
receives a message flow from the requester pool. Message start (Figure 6-4, right) implies that
a new instance of the process is created whenever the message is received. Receiving the
message in an activity following a None start (left) implies manual start by a task performer,
followed by a wait for the message. Also, message flow to an activity implies the possibility of
the message, whereas a Message start event implies the certainty of the message.

Chapter 6. BPMN Style | 73

5. If you can, model internal organizational units as lanes within a single process pool,
not as separate pools. Separate pools imply independent processes.

There are a few occasions when your internal business process should be modeled as multiple
pools, meaning multiple BPMN processes, but most of the time it is best to model it as a single
BPMN process, in a single pool. Representing each organizational unit that performs process
activities as a separate pool (Figure 6-5, left) is usually incorrect. This implies each unit’s
process is independent of the others, not a fragment of a single end-to-end process.
Representing the organizational units as lanes within a single pool (Figure 6-5, right) signifies
a single BPMN process end-to-end.

If this cannot be done, it is usually because there is not alignment of the process instance
across the organizational units. For example, Figure 6-5 says that each order is invoiced
separately. You could not model it this way if the Billing process was based on monthly
statements rather than invoices for each order. In that case, you could use separate pools for
the Order and Billing processes (Figure 6-6). Here the processes communicate via a shared
data store.

Figure 6-5. Organizational units performing process activities should normally be
represented as lanes within a single pool, not separate pools

74 | Chapter 6. BPMN Style

Figure 6-6. Multiple pools may be required if there is not 1:1 correspondence between the
process instances

6. Label process pools with the name of a process; label black-box pools with a
participant role or business entity.

Labeling black-box pools using generic role or entity names like Seller, Manufacturer, or
Lender is good practice, but it is better to label process pools with the name of the process.
Unfortunately, the BPMN 2.0 specification itself encourages the practice of labeling process
pools with the name of an organization or role. So let me elaborate on why it is a bad thing.

Part of the reason is technical. In the BPMN metamodel and XML, the semantic element
directly referenced by a pool shape is called a participant. But “participant” is not the same as
a task performer. It merely identifies a counterparty in the transaction relating the process
requester and provider. Each participant, however, is associated with at most one BPMN
process. Thus a pool simultaneously represents both a participant and a process.

So the question becomes, what does the pool label represent? The spec is silent on this, but the
normal convention is that it represents the name attribute of the associated semantic element,
in other words the participant name. So each pool with the name My Company defines a
participant named My Company. Even though they have the same name, technically those
could represent distinct participants (and point to different processes), because the unique
identifier of any semantic element is not its name but its id attribute.

But here is where Method and Style comes in. The id is not visible in the diagram; what you
see is only the label, the name. Method and Style says that what you see in the diagram is
what counts, not information hidden in invisible XML. By that principle, a model should
never have two pools with the same name that secretly mean different semantic entities. In

Chapter 6. BPMN Style | 75

fact, this should apply not only across the diagrams of a single BPMN model, but across all of
your organization’s BPMN models, if they interact with each other.

I believe the only way this works is if the pool label also names the process. That implies that
for a process pool the participant name is the same as the process name, not the name of a
department or company. That might seem odd, but consider why this is a good thing. First,
there is no other place in the diagram where the process name appears. Each distinct process
should have a different name in the diagram. If you label white-box pools with the name of
your organization, many will have the same name. Interconnecting them with message flows
then suggests the message flow source and target participants are the same participant…
which is not allowed and makes no sense.

7. Indicate success and exception end states of a process or subprocess with separate
end events, and label them to indicate the end state.

This principle of composition is part of the Method, as we saw in Chapter 5. More than any
other single characteristic, attention to activity and process end states distinguishes the
Method and Style approach. Most BPMN modelers typically use a single end event to
represent process level completion regardless of end state. That hides valuable information,
however, and makes it harder to trace the process logic from the top level down in a
hierarchical model. It’s better to use a separate end event for each end state you want to
distinguish (Figure 6-7). If the end state has a bearing on the subsequent flow, then it is
especially important to show the relevant end states as separate end events.

Figure 6-7. Represent distinct end states with separate end events, labeled with the end
state

8. Label activities VERB-NOUN.

Activities, including subprocesses, represent work or actions performed in the process, not
functions or states. Therefore you should give them names of the form VERB-NOUN. For
example:

• Check credit (action), not Credit check (function) or Credit OK (state)
• Approve loan (action), not Loan approval (function) or Loan rejected (state)
• Receive report (action), not Report received (state)

9. Use start event trigger in top-level process to indicate how the process starts.
• Use a Message start event to signify a process triggered by external request. The

event should be labeled Receive [message flow name].

76 | Chapter 6. BPMN Style

• Use a Timer start event to signify a scheduled process, typically recurring. The event
should be labeled with the recurring schedule, such as Monthly or Mondays at 8am.

• Use a None start event to signify a process manually started by a task performer. It
may be left unlabeled.

10. If a subprocess is followed by a gateway labeled as a question, the subprocess should
have multiple end events, and one of them should match the gateway label.

Another way of saying this is if the flow following a subprocess branches into two alternative
paths, the gateway should be labeled [end state 1]?, where [end state 1] is the name of one of the
child-level end states, and the gates should be labeled yes and no. Instances reaching end state
1 of the subprocess follow the yes path out of the gateway, and those reaching the other end
state follow the no path.

The top diagram in Figure 6-8 is incorrect because the Approved and Rejected end states of the
subprocess are combined in a single end event. Even though the logic is easy to follow in this
example, the style rule says there should be two end events, and one of them should be named
Approved, matching the gateway label Approved? With more complex models, this assists top-
down traceability of the process logic through the diagram hierarchy.

Chapter 6. BPMN Style | 77

Figure 6-8. Subprocess followed by XOR gateway should have two end states, one
matching the name of the gateway

11. Show message flow with all Message events.

Message flows are optional in BPMN, and even in the illustrations in this book, where they do
not add value I may not show them. But in a real, finished BPMN model, I think it is best to
show the message flow connected to all Message events. In the Level 1 palette, we have seen
Message start and end events, and we will see a few more at Level 2. Style rule validation
flags any Message event without an attached message flow.

12. Match message flows in parent- and child-level diagrams.

A second top-down traceability rule requires replicating in the child-level diagram all
message flows connecting to a collapsed subprocess. The count and labels of message flows
should match at parent and child levels.

Figure 6-9, taken from the chapter on the Method, shows four message flows connecting to
Order car from factory in the parent level. The rule says those same four message flows, with
the same names, should be replicated in the child-level expansion, Figure 6-10.

78 | Chapter 6. BPMN Style

Figure 6-9. Four message flows connect to Order car from factory in parent-level diagram

Figure 6-10. Message flows replicated in expansion of Order car from factory

13. Label message flows directly with the name of the message.

It is not enough simply to draw the message flows. You also need to label them. The label
should be the name of the message, such as Rejection notice. It should not be the name of a
state, such as Rejected, or the action of sending or receiving, such as Send rejection.

It is incorrect to leave the message flow unlabeled and identify the message by an associated
data object (Figure 6-11, left). In BPMN 2.0, a data object cannot be associated to a message
flow. It is technically legal to use a Message icon attached to the message flow (Figure 6-11,
center), but the best way to label a message flow is directly (Figure 6-11, right).

Chapter 6. BPMN Style | 79

Figure 6-11. Label message flows directly with the name of the message

14. Two end events in a process level should not have the same name.

If they represent the same end state, combine them in a single end event. If they represent
distinct end states, give them different names.

Figure 6-12. Two end events in a process level should not have the same name

15. Two activities in a process model should not have the same name.

If they represent the same activity, use a call activity referencing the same global task or
process. If they represent different activities, give them different names. This is self-
explanatory, but I sometimes see a subprocess containing a task of the same name. That is
incorrect; just give them different names (Figure 6-13).

80 | Chapter 6. BPMN Style

Figure 6-13. Two activities should not have the same name

16. A subprocess should have a single None start event.

Except for “parallel box” subprocesses, which have no start event, a subprocess should
contain exactly one start event, and it must be None type (no trigger). In a top-level process,
multiple start events are used to represent alternative triggers, but triggered start events are
not allowed in a subprocess. (Note: this does not apply to an event subprocess, a type of
exception handler that is not part of the Level 1 or Level 2 palette. We’ll talk about event
subprocesses in Chapter 7.)

The spec does not specifically say that a subprocess may have only one None start event, but a
subprocess with two None start events is ambiguous. Do those events represent parallel or
alternative start nodes? In a top-level diagram, they mean alternative start points. In a
subprocess, always use a single start event, removing the ambiguity. For example, the left
diagram in Figure 6-14 is ambiguous, but the right diagram indicates Receive application and
Receive payment are alternative, not parallel, activities. A parallel split following a single start
event (with a parallel join before Complete registration) would indicate parallel activities.

Chapter 6. BPMN Style | 81

Figure 6-14. A subprocess should have a single None start event

17. A process pool in child-level diagram (if drawn) should be labeled with name of the
top-level process, not the name of the subprocess

I see this all the time: A collapsed subprocess Check Credit in the pool labeled Order process in
the top-level diagram is expanded in a separate diagram, following the hierarchical style. The
child-level expansion is enclosed in a pool labeled Check Credit. That is incorrect. You could
omit the process pool in the child-level diagram, but if you draw it, it must also be labeled
Order process.

The reasoning behind this is the same as number 6. It is really implied by the metamodel and
XML schema, but since the spec doesn’t talk about this explicitly, I’ll call it a style rule. The
pool shape on the child level points to a single participant, and that participant points to a
single top-level process. It cannot point to a subprocess. Method and Style assumes that the
modeler creates the diagram, and the diagram generates the XML, so a pool called Check
Credit would generate a new participant with that name and (probably, but tool-dependent)
also a process with that name. But Check Credit is not an independent process, just a
subprocess of Order process.

The ambiguous relationship between pool and process names, inherent in the BPMN 2.0
XML, actually requires the tool to prompt the modeler for additional information. (The
reason this has been so little remarked up to now, I think, is that very few tools have thought
about the XML serialization details yet, even though they are crucial to model interchange.
This is exactly the subject of the BPMN Implementer’s Guide section of this book.)

In the tool I use for most of my BPMN training, Process Modeler for Visio from itp commerce,
the modeler can tell the tool that two (or more) pools in the model reference the same
participant. When you do this, the pool label is changed automatically to that of the
referenced participant, and the XML structure is produced correctly. If you don’t do that,
labeling the child-level expansion of a subprocess may give a structure that is not be what you
intended. In the example described above, the child-level diagram of Check Credit is, in the
XML, actually another top-level process named Check Credit, and in the original Order process
the contents of the Check Credit subprocess are empty! That structure would make sense if the
collapsed subprocess were converted to a call activity… but it’s not.

Bottom line: Follow the style rule as described above.

82 | Chapter 6. BPMN Style

18. In a hierarchical model, a child-level diagram may not contain any top-level
processes.

This is a technical point, discussed more fully in the BPMN Implementer’s Guide section. I
add it here as well because violating the rule can create XML structures that are either
ambiguous or not what the modeler intended. From the modeler’s perspective, it’s best to
consider each diagram (page) of a hierarchical model as either a top-level diagram or a child-
level diagram; it may not be both simultaneously. A child-level diagram may contain as
many black-box pools as you want, but it may not contain activities of any process other than
that of the parent-level subprocess. A top-level diagram may contain elements of more than
one process.

19. Don’t use an XOR gateway to merge alternative paths, unless into another gateway.
Just connect the sequence flows directly.

Figure 6-15. Don’t use XOR gateway to merge alternative paths

20. Don’t use an AND gateway to join parallel paths into a None end event. A join is
always implied at a None end event.

Figure 6-16. Don’t use gateway join into None end event

Official BPMN 2.0 Rules
One principle of BPMN style is so obvious I shouldn’t need to say it: The model should not
violate any official rules of the BPMN 2.0 specification. I mentioned this at the beginning of
the chapter, along with the reason why different tools may give different validation results on
the same BPMN model. Here are some of the basic rules that apply to the Level 1 palette.
We’ll revisit a more complete list in Chapter 11.

Chapter 6. BPMN Style | 83

21. A sequence flow may not cross a pool (process) boundary.

You cannot, for example, connect the end event of Process 1 to the start event of Process 2 using
a sequence flow. You can do it, however, with a message flow.

Figure 6-17. A sequence flow may not cross a pool boundary

22. A sequence flow may not cross a subprocess boundary

I most often see this error when the modeler tries to wrap a process fragment in an expanded
subprocess shape after the fact. The left diagram in Figure 6-18 is incorrect, since sequence
flow cannot cross the subprocess boundary. All sequence flows in the child-level expansion
must be completely contained inside the subprocess shape.

Figure 6-18. Sequence flow may not cross a subprocess boundary

23. A message flow may not connect nodes in the same pool

A “message” in BPMN does not mean the same as a “message” in English. For instance, an
email between two tasks in the same process is not a BPMN message. A BPMN message is, by
definition, exchanged between the process and an entity outside the process. Consequently,
the head and tail of a message flow may not be in the same pool.

84 | Chapter 6. BPMN Style

Figure 6-19. A message flow may not connect nodes in the same pool

24. A sequence flow may only connect to an activity, gateway, or event, and both ends
must be properly connected.

You may not connect a sequence flow, for example, to a pool, a data object, or another
sequence flow.

Figure 6-20. A sequence flow may not connect to another sequence flow, only to an
activity, gateway, or event

25. A message flow may only connect to an activity, Message (or Multiple) event, or
black-box pool, and both ends must be properly connected.

You may not connect a message flow, for example, to a process pool boundary, a data store,
or a gateway, or leave one end unconnected.

85

 PA RT I I I :
ME T H O D A N D ST Y L E – LE V E L 2

87

CHAPTER 7

7. Events

The most significant change between BPMN Level 1 and Level 2 is the emphasis on events, the
circle shapes in the diagram. The BPMN spec defines an event as “something that happens”
in a process. It would be more accurate to say that a BPMN event describes how the process
responds to a signal that something happened, or – in the case of a throwing event – how the process
generates a signal that something happened. The type of signal, called the trigger for catching
events and the result for throwing events, is indicated by the icon inside the circle.

At Level 1, each step in the process is triggered by the completion of the prior step. When an
activity completes, the sequence flow out of it initiates the next step in the process. That is the
usual way a process moves along, but events let you describe additional behaviors. For
example, you can say the process pauses until the trigger occurs, and then resumes. Or you can
say that if the trigger occurs while an activity is running, the activity is terminated
immediately and some other exception activity is initiated immediately. Or, alternatively, the
activity continues but something else is initiated in parallel with it. BPMN provides a visual
language for all these event-triggered behaviors.

When you hear people say that “BPMN is too complicated for business people,” usually what
they are talking about is its bewildering array of event types. In fact, they are specifically
talking about the table shown in Figure 7-1, clipped directly from the BPMN 2.0 specification.
That table has 13 rows, one for each trigger/result type, and 8 columns, a total of 104 distinct
combinations. Also, half of those cells are empty, meaning the combination is not allowed!

88 | Chapter 7. Events

Figure 7-1. BPMN 2.0 events – full element set

Chapter 7. Events | 89

I agree that if you needed to memorize this table, BPMN would indeed be too complicated for
anyone. Fortunately you don’t. In Level 1 we learned about None, Message, and Timer start
events, and None, Message, and Terminate end events. (We also saw Multiple start and end
events, which are distinct shapes but not additional semantic elements; they just mean “more
than one trigger or result”.)

The Level 2 palette now adds intermediate events, the ones with the double ring, and a few
additional triggers. The Analytic subclass of BPMN 2.0, i.e., the official Level 2 palette,
includes the Level 1 triggers plus Error, Escalation, Conditional, Signal, and Link. We are
going to mainly focus on the “Big 3” event types – Timer, Message, and Error. Those are the
ones you really need to know, and it’s a small and readily learnable subset (Figure 7-2).
Afterward we’ll also briefly discuss Escalation, Signal, Conditional, and Link, as well as event
subprocesses. We’ll defer discussion of Cancel and Compensation events until Chapter 10.

Figure 7-2. BPMN 2.0 events – the ones you need to know

Event-Triggered Behavior
Event-triggered behavior refers to process actions initiated immediately upon occurrence of a
specific trigger signal. In BPMN Level 1 we saw one example of this in the triggered start
event, which always creates a new instance of the process. A Message start event creates a
new process instance whenever it receives the message represented by the incoming message
flow. A Timer start event creates a new process instance whenever the recurring schedule
dictates. Instantiation is presumed to occur immediately upon detection of the trigger. In an
executable process, instantiation is immediate and automatic. In a non-automated process,
we use Message and Timer start events even when instantiation is human-mediated, as long
as it is effectively triggered by the arrival of the message or timer signal.

Here we turn our attention to intermediate events, the ones with the double ring. As the name
suggests, intermediate events occur after the start of a process level and before the end. But

90 | Chapter 7. Events

the precise meaning of an intermediate event depends on the details of its representation – the
icon inside, the color of that icon, the double-ring line style, and its placement in the diagram.
The four columns of intermediate events in Figure 7-1 (plus the two event subprocess start
columns) actually signify different triggered behaviors for a given trigger signal.

• A throwing intermediate event, with the black icon inside, means the process generates
the trigger signal. Only a few intermediate events support the throwing behavior.
By convention, throwing the signal occurs immediately and automatically as soon as
the incoming sequence flow arrives, and the process continues immediately
afterward on the sequence flow out of the throwing event. (In a non-automated
process, we just pretend it is automatic and immediate.) A Message intermediate
event supports throwing behavior, but not Timer or Error.

• A catching intermediate event, with the white icon inside, drawn with sequence flow
in and sequence flow out, means the process waits for the trigger signal. When the
trigger signal arrives, the process resumes on the sequence flow out of the event.
Most intermediate events support this behavior, but not all. Message and Timer
events do, for example, but not Error. In other words, a process can wait for a
message or timer signal, but it cannot wait for an error.

Figure 7-3 Catching (left) and throwing (right) Message event

• A catching intermediate event drawn on the boundary of an activity, called a
boundary event, does not signify waiting. It means while the activity is running, the
process listens for that signal. If it occurs before the activity completes, the sequence
flow out of the event, called the exception flow, is triggered. On the other hand, if the
activity completes without the occurrence of the boundary event signal, the exception
flow is ignored and the process continues on the sequence flow out of the activity,
called the normal flow.

Figure 7-4. Interrupting (left) and non-interrupting (right) Message boundary event

A boundary event has no incoming sequence flow and must have exactly one outgoing
sequence flow, the exception flow. There are two types of boundary event. An interrupting
boundary event, denoted by the solid double ring, means the activity that the event is attached
to is terminated immediately upon occurrence of the trigger signal. The process does not exit
on the normal flow but continues immediately on the exception flow, the sequence flow out of
the event. Message, Timer, and Error events all support interrupting boundary event
behavior.

Chapter 7. Events | 91

A non-interrupting boundary event, denoted by the dashed double ring, does not terminate the
activity. That activity continues uninterrupted, and when it completes, the process continues
on the normal flow, the sequence flow out of the activity. But, in addition, upon occurrence of
the trigger a new parallel path of the process is instantiated immediately on the exception
flow. In this case, the exception flow represents actions taken in addition to those on the
normal flow. Non-interrupting events are new in BPMN 2.0, probably the most significant
addition to the palette. Message and Timer events support non-interrupting boundary event
behavior, but Error boundary events are always interrupting.

Understanding how to use Timer, Message, and Error events correctly is the key to BPMN
Level 2. Let’s take them one at a time.

Timer Event

Catching Timer Event
Drawn with sequence flow in and out, a catching Timer intermediate event represents a delay.
It means either wait for [specified duration] or wait until [specified date/time]. For example, you
might want to wait for a short while before retrying an activity such as polling for posted data
(Figure 7-5, top). You can also use a catching Timer event to model a wait for a scheduled
action, such as a semi-monthly check run (Figure 7-5, bottom).

Figure 7-5. Delay using Timer event

A catching Timer event does NOT mean wait for something to occur, such as a response to a
request; that would be a Message event. And you don’t use a catching Timer event to signify
that an activity “usually” takes three days; you can use a Timer boundary event to say what
happens if the activity takes longer than three days.

BPMN provides XML attributes for the Timer event to specify the duration or a specific
date/time, but these are not directly visible in the diagram (and not in the Analytic subclass).
Therefore the duration or date/time value is represented in the diagram by the label (name) of
the Timer event.

92 | Chapter 7. Events

Timer Boundary Event
A Timer boundary event acts like a combination stopwatch and alarm clock. By convention,
the stopwatch starts when the activity the event is attached to starts. An activity “starts”
when the sequence flow into it arrives, not when the performer decides to begin work on it. If
the activity is not complete by the Timer event’s specified duration or date-time parameter,
the alarm is triggered. Remember, BPMN does not have a way to say how long something
usually takes, but it does let you say what happens if it takes too long to complete.

What happens then depends on whether the event is interrupting or non-interrupting. An
interrupting Timer event aborts the activity, and the process continues immediately on the
exception flow. A non-interrupting Timer event immediately triggers a parallel thread of
execution on the exception flow without aborting the activity or the normal flow out of it.

For example (Figure 7-6), you could use an interrupting Timer event in a hiring process to
indicate that if a search for internal candidates does not complete within two weeks, you want
to abandon it and engage an external search firm. Note that because the exception flow and
normal flow are exclusive alternatives, they can be merged at Screen resumes without a
gateway.

Figure 7-6. Interrupting Timer boundary event

The non-interrupting Timer event is generally more useful than the interrupting variety. If
something takes too long, you usually want to keep doing it but do something else in
addition, such as notify the requester, notify the manager, or get additional help.

Figure 7-7. Non-interrupting Timer boundary event

For example (Figure 7-7), if it takes more than 4 hours to complete a service request, you want
to notify the manager but keep performing the service. The exception flow is triggered at 4
hours after Perform service starts, but it does not terminate Perform service. That activity
continues on, and when it is complete, the process continues to Send invoice. With non-
interrupting events, the normal flow and exception flow are performed in parallel, or logically
in parallel, since Notify manager is probably finished before Send invoice starts. Here we join

Chapter 7. Events | 93

the normal and exception flow paths directly to the end event, since a gateway is not used to
join into a None end event.

Since it does not abort the activity it is attached to, a non-interrupting Timer event could be
triggered multiple times. For example, you could send a reminder or notification on the
exception flow every hour until the activity is complete. In that case, label the event Every
hour.

Timed Interval
A Timer boundary event measures the time from start to completion of a single activity, but
what if you want to time the interval from point A to point B in the process, spanning multiple
activities? That’s easy. Just wrap the fragment from point A to point B in a subprocess, and
attach the Timer event to the subprocess boundary.

Figure 7-8 illustrates a fast food process: Take the order, collect the money, in parallel prepare
the burger, fries, and drink, and when all those are complete deliver to the customer.

Figure 7-8. To time an interval spanning multiple activities…

Now we’d like to say if the order isn’t ready to deliver to the customer within 5 minutes of
taking the order, the restaurant will refund the money. In other words we want to time an
interval spanning multiple activities, as shown in Figure 7-8. We can do that by enclosing that
interval in a subprocess, and attaching a non-interrupting Timer event to it (Figure 7-9). In
the inline expansion representation, it looks like this:

94 | Chapter 7. Events

Figure 7-9. …wrap the interval in a subprocess and attach Timer boundary event.

Timer Event vs. Gateway
Beginners sometimes try to test the duration of an activity using a gateway following the
activity. That is usually incorrect, because the process does not arrive at the gateway until
after the activity finishes, and by then the triggered action is too late. The whole point of a
boundary event is that its action occurs immediately upon the timeout, before the activity it is
attached to is complete. Here is an illustration.

Consider the two diagrams in Figure 7-10, both intended to represent a wireless carrier’s Add
Plan Features process. Adding the features is supposed to take no longer than one hour. If it
takes longer, we want to notify the customer with the expected completion time. The question
is this: Does the customer notification occur at the same time in both diagrams?

Figure 7-10. Does customer notification occur at same time in both diagrams?

No. In the diagram on the top, with the gateway, the customer is not notified until after the
plan features are added, no matter how long that takes. That is probably not what the
modeler intended. In the diagram on the bottom, the customer is notified after exactly 1 hour

Chapter 7. Events | 95

if the activity is not yet complete. Even though the Timer event here does not interrupt the
task, its action is immediate. It does not wait for the activity to complete. That’s the value of a
Timer boundary event.

Message Event
Before diving into the details of Message events, we need to say more about what BPMN
means by “sending” and “receiving.”

Message and Message Flow
The terms send and receive should be considered “keywords” in BPMN, reserved specifically
for sending and receiving a message, represented in the diagram by a message flow. In BPMN a
“message” means any communication between the process and an outside entity – a customer
or service provider, another internal process, or possibly even an IT system. The BPMN 2.0
specification defines a message as simply “the content of a communication between two
participants.” That communication could take any form. It does not have to be a SOAP or
JMS message, as it might typically be in an executable process. In most process models it is
more likely some form of human communications, such as a letter, fax, email or phone call.
The only requirement is that the sender and receiver of the message are different
“participants,” meaning not part of the same process.

In fact it is even possible that a BPMN message represents a material flow, delivery of some
physical object. The BPMN metamodel specifies the message content or “payload” through
its item definition. Early drafts of BPMN 2.0 used the term data definition, but it was changed to
item definition to allow messages (and data objects, as well) to represent both physical and
information objects.

What distinguishes a Message from another form of BPMN inter-process communication
called Signal is that a Message must be addressed to a particular process, or possibly a
particular instance of that process, whereas a Signal may be broadcast to any process that
might be listening. (We’ll talk more about Signal later in this chapter.) Because a message
flow identifies a particular process activity or event that sends or receives the message, it is
possible that a single message is represented by more than one message flow in the diagram,
each representing receipt of the message at a different point in the flow.

Send Task and Throwing Message Event
The term send in BPMN implies a message, and thus a message flow. A message may be sent
from a black-box pool, a throwing Message event, or any type of activity.

Recall that a message flow out of an activity such as a User task signifies the possibility of
sending the message, not the certainty of it. We’d like to have a way to say that a step in the
process always sends the message, and BPMN Level 2 provides that, in two different ways.
One is a Send task, denoted by a black envelope icon (Figure 7-11, left). A Send task is a task
that does only one thing, sends a message. By convention, the send is immediate upon arrival

96 | Chapter 7. Events

of the incoming sequence flow, after which the flow immediately continues. In that sense it is
implicitly automatic, although it could be used for human communications as well if the
intent is to show the certainty, not the possibility, of sending the message. (Alternatively, you
could attach a text annotation to a message flow out of a User task to specify that the message
is always sent or only sent under certain conditions.)

Figure 7-11. Send task and throwing Message intermediate event

Alternatively, a throwing Message intermediate event (Figure 7-11, right) does the same thing.
Effectively it is the same as a Send task. When the incoming sequence flow arrives, it sends a
message and then immediately continues. You might ask why BPMN has two different
elements that do exactly the same thing. Good question. I don’t know.

Actually, there is a tiny difference between a throwing Message event and a Send task. As a
type of activity, a Send task has a performer; an event does not. Also, you can attach a marker
to a Send task to signify that it is performed multiple times, i.e., sends multiple messages; you
cannot do that with an event. And you could attach an Error boundary event to a Send task,
which you cannot do for a Message event. But for all practical purposes they are identical.

When a process is initiated by a Message start event, I like to show the return of final status in
Message end events, a separate one for each end state. In IT terms, the start and final status
messages in a sense define the “signature” or “interface” of the process. And I just like the
symmetry of it in the diagram. For an executable process, the start and end event message
flows effectively represent its WSDL.

However, in non-executable modeling, the fact that a Message event has no performer makes
some modelers hesitant to use it to return final status when identifying the sender of the
message is important. This often comes up in my BPMN training, and here is how I try to
resolve it.

One way is by using lanes. Lanes usually identify the human performer of an activity as a role
or organizational unit. Technically, an event has no performer, so you could argue lanes do
not apply. But in BPMN 2.0, lanes can actually be used for any type of element categorization
that you want. It’s purely up to the modeler. So if you want to have an internal convention in
your organization that says the lane of a Message end event identifies the sender, that is
perfectly in accord with the BPMN spec.

A second way is more technical, and it applies mostly to email. Even if you say that lanes do
not apply to Message events, that does not mean the identity of the sender is invisible to the
recipient. It is part of the content of the message. In the standard email message structure, it’s
the From field. Nevertheless, some modelers have a hard time drawing a Message end event
in Lane A when the sender is really someone in Lane B. That might come up, for example,
where multiple process paths merge to a single end event in Lane A, because it represents a

Chapter 7. Events | 97

single end state, and the sender of the final status message could be in Lane B. To modelers
who still cannot come to terms with that I advise sending final status from separate tasks in
the respective senders’ lanes, and afterward merge to a single None end event.

“Sending” Within a Process
A common beginner mistake is to use a Send task to forward work to a downstream task
(Figure 7-12). Since the “sender” and “receiver” are part of the same process, you may not
use a message. Thus a Send task is incorrect. In fact, since “send” is a sort of BPMN keyword,
you should not even use the word “send” in the label of a User task!

Figure 7-12. Don’t use a Send task to communicate within a process

So how do you “send” work to a downstream task performer, or simply notify a Manager in
another lane of the process?

In the case of forwarding work downstream, usually the best choice is not to model the
“sending” action explicitly at all. It is simply implied by the sequence flow (Figure 7-13). In an
automated workflow, the sequence flow delivers not only the work item notification to the
downstream task performer, but all of the instance data available at that point in the process,
including documents, forms, etc. Unless there is specific reason to call attention to the effort
of sending, it is best to just imagine that similar delivery occurs somehow even in non-
automated processes.

Figure 7-13. “Sending” work downstream is implied by sequence flow alone

98 | Chapter 7. Events

It could be, however, that forwarding the budget materials to the Manager is not just
attaching a spreadsheet to an email. Let’s say it requires packing up two drawers of a file
cabinet and carting it off to Fedex. And let’s say that effort is exactly the kind of thing you
want to improve upon in the to-be process, so you don’t want to hide it. In such a case, you
should make it a task, but it is a User task not a Send task (Figure 7-14). Since there is no
BPMN message involved, don’t even use the verb “Send” in the label. Instead use names like
Forward… or Pack and Ship…. And if you want to call attention to the materials being shipped,
you can use a data object.

Figure 7-14. User task can represent the work of “sending” within a process

Notifications, at least those where no action on the recipient’s part are required to advance the
process, are slightly different. Here you don’t want to add a task to the recipient lane, since
that implies a required action on the part of the recipient. Instead just add a User task in the
sender’s lane, identifying the recipient in the task label (Figure 7-15).

Figure 7-15. Notification within a process

Receive Task and Catching Message Event
Receiving is closely related to sending. Again, the term technically applies only to messages,
communications from external participants. We have already seen that a Message start event
creates a new process instance when the message is received. We can also receive a message
in the middle of a process, but as we discussed with sending, a message flow into a User task
only suggests the possibility of incoming message, not the certainty of it.

Chapter 7. Events | 99

BPMN provides a task type that only receives a message, called Receive task, with the white
envelope icon (Figure 7-16, left). A Receive task waits for a message. That is the only thing it
does. When the incoming sequence flow arrives, the process instance pauses; when the
message arrives, the process immediately resumes on the outgoing sequence flow.

Figure 7-16. Receive task and catching Message intermediate event

Technically, a Receive task immediately following a None start event in a top-level process
may be designated as instantiating, meaning the message creates the process instance.
However, to show a request-triggered process it is better to use a Message start event instead,
since the None start plus instantiating Receive task construction is indistinguishable in the
diagram from a manual start followed by waiting for the message. Two different meanings
for the same diagram construct violates the basic Method and Style principle, so you should
avoid instantiating Receive tasks.

A catching Message intermediate event (Figure 7-16, right), drawn with sequence flow in and
out, has the same meaning as a Receive task. It waits for a message, and immediately
resumes when the message is received. As with sending, again there is a tiny difference
between a Receive task and a catching Message event. You can attach a Timer boundary
event to a Receive task, but you cannot do that with a Message event. As it turns out, there is
another way to accomplish the same thing, and we’ll see that shortly.

Asynchronous and Synchronous Messaging
Send and Receive tasks, or throwing and catching Message events, represent asynchronous
communications. As soon as the process sends the message, the flow continues on the outgoing
sequence flow. It does not wait for a response message. Synchronous communications, on the
other hand, means when the process sends a message it waits for a response before
continuing.

A Service task is an example of synchronous communications. Recall that a Service task
represents an automated action. In the BPMN 2.0 metamodel, the Service task actually means
an automated request for an action performed by some external system, with receipt of that
system’s response. The request and response are really messages, but usually we do not
represent them as message flows in the diagram. They are simply implied. The Service task
is not complete until it receives the response from the system that performs the action. That is
what synchronous means.

In an executable process, synchronous tasks are short-running, completing in milliseconds or
seconds. If an automated task is long-running, meaning it takes minutes, hours, or even weeks
to complete, it is modeled in BPMN as an asynchronous request, using a Send task or
throwing Message event, not a Service task. While this distinction is important for executable
processes, it is a good convention to apply to non-executable BPMN as well: If an automated

100 | Chapter 7. Events

function is long-running, represent it with separate Send and Receive tasks (with message
flows). Reserve Service task for short-running actions (Figure 7-17).

Figure 7-17. Use Send and Receive tasks for long-running services, Service task for short-
running

Event Gateway
Figure 7-18 illustrates use of throwing and catching Message intermediate events in a process
for issuing a credit card. If the Customer’s application is missing required information, the
process sends a request for it and waits for the response. Whenever you use a Message event
you should draw the message flow, and label both the event and the message flow. The event
should be labeled with the action – Request X, for example – and the message flow should be
labeled with the name of the message.

Figure 7-18. Throwing and catching Message intermediate events

When there is a possibility that the response may not be returned before some deadline, you
should not wait for it using a “naked” Message event as in Figure 7-18. If the customer
decides not to respond to the request, the process instance will wait forever at the catching
Message event. Real processes don’t work that way. They will wait up to some maximum
time, and then do something else. You can model that behavior with a Timer boundary event
on a Receive task, but there is a way to do the same thing with a catching Message event.

Figure 7-19 is a better way to wait for the response message. It’s called an event gateway. The
symbol inside the gateway shape is the Multiple intermediate event, and on each gate there is a

Chapter 7. Events | 101

catching intermediate event, usually a Message event and a Timer event. (You may also
attach a gate to a Receive task with no boundary events, but better to just use a Message
event.)

Figure 7-19. Event gateway waits for response or timeout, whichever occurs first

Like the regular XOR gateway, an event gateway represents an exclusive choice – i.e., only
one of the gates is enabled – but the choice is not based on a process data condition. The gate
that is enabled is the event that occurs first. An event gateway may have two or more gates,
each representing an event, and it’s a race between them. In Figure 7-19 it’s a race between
the response message and a timeout. If the Info response message is received within 7 days, the
Message event gate is enabled and the instance continues to Process application. If it is not
received in 7 days, the Timer event gate is enabled and the instance continues to the Rejected
end state.

In a BPMN tool, you usually must construct the event gateway in pieces – the gateway
element itself and the event on each gate – but it’s best to think of the whole assembly as the
event gateway.

You can also use an event gateway to wait for alternative messages. For example, if you model
Approval and Rejection as separate messages, you can receive them on separate gates of an
event gateway (Figure 7-20). However, you could just as well model Approval and Rejection as
simply different content of a single Response message. In that case, you can test the content
value in an XOR gateway after receiving the message (Figure 7-21).

102 | Chapter 7. Events

Figure 7-20. Branching on distinct messages with event gateway

Figure 7-21. Branching on received message content with XOR gateway

The distinction between Figure 7-20 and Figure 7-21 is mostly notational, not significant in
business terms. (In fact, both message flows in Figure 7-20 could technically point to the same
message element in the underlying XML.) If instead of coming from a black-box pool,
Approval and Rejection messages came from separate end events of another process, you
would need to use Figure 7-20.

Message Boundary Event
A message you are waiting for usually implies a response to a prior request. But BPMN
provides a way to respond to unsolicited messages as well. In that case, the process is not
paused waiting for the message, but listening for it while running. A Message boundary event
attached to an activity initiates the response to the message if it arrives while the activity is
running. An interrupting boundary event aborts the activity immediately and exits on the
exception flow, the sequence flow out of the event. A non-interrupting boundary event continues
the activity but immediately initiates a parallel action on the exception flow. If the activity
completes without the message arriving, the exception flow is not triggered. The process
simply continues on the normal flow, the sequence flow out of the activity.

Chapter 7. Events | 103

Figure 7-22. Interrupting (left) and non-interrupting (right) Message boundary events

For example, if the customer cancels an order while it is being fulfilled (Figure 7-22, left), an
interrupting Message boundary event immediately terminates Fulfill Order and exits on the
exception flow. On the other hand, if the customer updates shipping information while the
order is being fulfilled (Figure 7-22, right), you do not want to terminate Fulfill Order but
initiate something else in addition, such as adding the updated shipping information to the
order. The exception-triggered action is on the exception flow. When Fulfill Order completes,
processing continues on the normal flow. With non-interrupting events, the normal flow and
exception flow exits represent parallel paths.

The same physical message may be represented in the process model by more than one
Message boundary event, each representing a different triggered behavior, depending on the
state of the process when the message arrives. How cancellation is handled immediately after
the order is placed may not be the same as when it is ready to ship.

Figure 7-23. The same message may be received in multiple boundary events

For example, in Figure 7-23 we see that the message Cancel order aborts the order process and
returns a Cancel confirmation message if it is received before Ship order starts. However, if the
same message is received during Ship order, the process in this case cannot be terminated. A
new action, Authorize return for credit is triggered, but Ship order continues, and when it
finishes the process goes to Send invoice. Both the exception flow and normal flow are enabled
in this case.

A couple matters of BPMN style are worth noticing in Figure 7-23. You should always draw
the incoming message flow to a Message boundary event and label both the event and the

104 | Chapter 7. Events

message flow. Since both boundary events handle the same physical message, usually it’s
best to give them the same name (and give the message flows the same name as well). It is
not required hat one boundary event is interrupting and the other non-interrupting; they both
could equally well be interrupting or both non-interrupting, as the semantics of the behavior
dictate.

If the response to the message is the same for every activity within a contiguous segment of
the process, you should not attach a Message boundary to each of those activities and merge
the exception flows. The correct way to model it is to enclose that segment in a subprocess and
attach a single Message event to the subprocess boundary (Figure 7-24).

Figure 7-24. Use a single Message boundary event on a subprocess enclosing a process
fragment when the event-triggered action is the same for all child-level activities

Error Event
The last of the Big 3 event types is the Error event, representing an exception end state of a
process activity. Error events only come in two flavors: an interrupting Error boundary event
and an Error end event. You cannot throw or wait for an Error signal in an intermediate event,
and there is no Error start event (except in an event subprocess, which we will discuss later).

An Error event on the boundary of a task simply represents the exception end state exit from
the task. The normal flow, the sequence flow out of the task, represents the exit when the task
completes successfully, and the exception flow, the sequence flow out of the Error event, is
the exit when it does not. Its meaning is exactly the same as an XOR gateway following the
task with a success gate and an exception gate (Figure 7-25).

Chapter 7. Events | 105

Figure 7-25. An Error boundary event on a task is equivalent to testing the task end state
with a gateway

In the first edition of the book, I advocated reserving Error events for technical exceptions, and
using the gateway end state test we saw in Level 1 to handle business exceptions. However, in
the time since that edition was published, feedback from students and others has caused me
to revise my opinion. Now I say it is perfectly fine to use Error events for any type of
exception, business or technical. There is no implied semantic distinction between testing the
end state in a gateway and using an Error event, although you could make such a distinction
as a convention for your organization.

You can have more than one Error event on the boundary, representing distinct exception end
states, although if the exception flows all take the same path it is best to consolidate all the
exceptions in a single Error event.

What if the task Check credit in Figure 7-25 were a subprocess instead? As before, the boundary
event Bad credit signifies that the activity has an exception end state Bad credit. But, unlike a
task, a subprocess exposes its end states explicitly. So a Bad credit Error boundary event on a
subprocess implies the child-level expansion must contain an end state Bad credit. This is not
just Method and Style; the BPMN spec here agrees. Not only must there be a Bad credit end
event in the child-level expansion, but it must be an Error end event.

An Error end event in a subprocess throws an error signal to the boundary of the subprocess,
where it is caught by the Error boundary event and exits on the exception flow. This is called
the Error throw-catch pattern. You could think of it as propagating an exception from child to
parent levels in a hierarchical BPMN model.

This is illustrated in Figure 7-26. The Bad credit error is thrown from a child-level end event to
a boundary event at the parent level. In the BPMN metamodel, both the Error end event and
Error boundary event reference the same error code, but since the error code does not appear
in the diagram, we apply the usual Method and Style principle and say that the labels of the
error thrower and catcher must match. Following some exception handling at the child level
(Update customer info), the error throw-catch propagates the exception to the parent level for
additional exception handling at that level (Contact customer and end the process).

106 | Chapter 7. Events

Figure 7-26. Error throw-catch

When you use them to model business exceptions, Error events are really just a notational
convenience, since we can describe the same behavior with gateways. Figure 7-27, the
gateway end state test from Level 1, means exactly the same thing as Figure 7-26, using Error
throw-catch. The gateway end state test also propagates exceptions from child level to parent
level.

Figure 7-27. Gateway end state test

In the examples presented so far, the error is thrown when the child level is already complete,
so the “interrupting” Error boundary event doesn’t really interrupt anything – the subprocess
is already over. But it is possible that the child-level expansion has parallel paths reaching
separate end events. If one of them is an Error end event, then throwing the error terminates
the subprocess even if the other path has not yet reached its end event. With parallel paths,

Chapter 7. Events | 107

Error throw-catch acts like the gateway end state test where the exception end state is a
Terminate, not a None end event.

Other Level 2 Events
The Analytic subclass of BPMN 2.0, what we have been calling the Level 2 palette, contains a
few more event types. Chances are you will never need to use them, but I will describe them
briefly here.

Escalation Event
Escalation is another one of those terms that has a specific meaning in BPMN that is not the
same as its general meaning in English, or even in business process management. In BPMN,
Escalation is the non-interrupting counterpart of Error, with similar throw-catch behavior.
An Escalation boundary event simply signifies a non-interrupting exception inside an activity.
That activity could be either a task or subprocess.

A valuable use case for an Escalation boundary event on a User task is ad-hoc user action. That
means while the performer is in the middle of the task, the performer may possibly initiate
another parallel path of action. Since BPMN does not describe the internals of a task, the
performer’s logic is invisible to the model, so triggering the non-interrupting exception flow is
effectively ad-hoc. For example (Figure 7-28), if a technical configuration issue comes up
during order entry, the salesperson may need to consult with a specialist before completing
the task. On a task, the Escalation event does not imply that the exception flow will be
triggered, only that it may be triggered.

Figure 7-28. Ad-hoc user action with Escalation event

The Escalation-triggered exception flow runs in parallel with the original activity and possibly
with activities on the normal flow exit. Figure 7-28 only “works” if Enter order always waits
for Consult tech specialist to complete before continuing to Fulfill order. But the diagram itself
does not ensure that. Technically, as modeled in Figure 7-28, Fulfill order could start before
the technical consultation is complete. If you want to say that can never happen, it might be
better to enclose Enter order and Consult tech specialist in a subprocess, as in Figure 7-29.

108 | Chapter 7. Events

Figure 7-29. Joining non-interrupting exception flow and normal flow with a subprocess

It is important that the action be initiated from the middle of the User task, not at the end. A
parallel thread of action initiated at the end of the task is better modeled as an OR gateway
following the task, which we will see in Chapter 9. You might argue this is inconsistent with
Error, where I say Error throw-catch and gateway end state test are equally acceptable. But
few tools support Escalation events, which are new in BPMN 2.0, and even fewer modelers
know what they mean. So it’s best to save Escalation for where it is really needed.

In a subprocess, an Escalation end event in the child-level expansion can throw a signal
caught by an Escalation event on the subprocess boundary in the parent-level diagram. (Such
an Escalation throw-catch signal can also be thrown by an Escalation intermediate event,
something you cannot do with Error.) Technically, an Escalation boundary event may be
either interrupting or non-interrupting, but there is no semantic difference between an
interrupting Escalation event and an Error event, so in the interrupting case I would just use
Error.

As with Error, an Escalation event on the boundary of a collapsed subprocess implies a
matching throwing Escalation event in the child-level expansion. Unlike Error, however, the
normal flow and exception flow exits from the activity are not alternative paths but parallel.

Signal Event
Message, Error, and Escalation events all constrain the relationship between thrower and
catcher. Error and Escalation can only throw to the boundary of the parent subprocess;
Message can only throw to another pool. One motivation for Signal events, added in BPMN
1.1, was to provide throw-catch signaling without those constraints, in particular, the inability
to communicate using a Message with an activity on a parallel path of the process.

But Signal was also given a second, completely unrelated, property. The signal itself would
be broadcast rather than targeted at a particular process or process instance, as Message is.
Broadcasting the signal rather than addressing it to a particular process has the advantage of
loosely coupling the thrower and catchers. Such behavior, known as publish-subscribe
integration, allows a process or system to announce an event, such as the addition of a new
customer, without having to know about all the processes that might be triggered by that

Chapter 7. Events | 109

event. Any process listening for that particular event could trigger a new instance using a
Signal start event (Figure 7-30).

Figure 7-30. Signal start event generally signifies publish-subscribe integration

The Signal event properties needed for intra-process signaling and publish-subscribe
integration actually work against each other, since communication with a parallel node in the
process requires addressing a particular process instance, not just broadcasting a signal. But
the BPMN spec conveniently ignores this problem. When used to communicate within a
process, we assume that the Signal provides the necessary details to target the right instance.
When the catcher is a Signal start event, usually the broadcast (also known as publish-
subscribe) behavior is assumed.

Signal can be thrown from either a throwing intermediate event or end event, and may be
caught in a start event, catching intermediate event (including event gateway), or boundary
event. This flexibility is one of its key benefits. We have seen previously how Terminate or
Error end events can be used to end a parallel path within the process level. But those
patterns immediately end the entire process level. Signal throw-catch to an interrupting
boundary event on a parallel path does not have this limitation. In Figure 7-31, if contract
negotiations fail, we can stop Develop specs using Signal throw-catch without immediately
terminating the process.

Figure 7-31. Signal throw-catch across parallel paths is more flexible than simple
Terminate

It is incorrect to attach a message flow to a Signal event. The link between the Signal thrower
and catcher is suggested only by matching labels. In fact, many times only one half of a Signal
throw-catch pair is part of the model at all. For that reason, Signal throw-catch should only be
used when Message, Error, or Escalation throw-catch cannot be used.

110 | Chapter 7. Events

Conditional Event
The Conditional event signifies a continuously monitored data condition. When the
condition, defined by a data expression, becomes true, the event is triggered. For example, a
Conditional start event can trigger a stock replenishment process when inventory becomes
low (Figure 7-32, left).

Figure 7-32. Conditional event (left) signifies a monitored data condition. Often Signal or
Message events can describe the same behavior.

In Figure 7-32, all three diagrams effectively do the same thing, with only slight differences in
interpretation. With Conditional start (left), the process model defines the monitored data
condition. With Signal or Message start, detection of low inventory is a function of an
external system or database. Signal start indicates a broadcast Low inventory signal, while
Message start indicates a specific request sent by the external system.

Conditional may be used with catching intermediate and boundary events, as well as start
events. The label of the Conditional event should indicate the monitored condition.

Link Event
The Link event is more of a drawing aid than a true event. It does not really throw or catch a
trigger signal. Link only supports throwing and catching intermediate events, not start, end,
or boundary events. A Link throw-catch pair is simply a visual shortcut for a sequence flow
between the throwing Link event and the catching Link event. It may only be used where
BPMN allows a sequence flow, so the Link throw-catch may not cross a subprocess or pool
boundary.

One use for Link events is as an off-page connector, where a single process level does not fit on
a single page. It may not be used between pages representing parent and child process levels;
both pages must represent the same process level. Thus Link event pairs are seen more often
in flat (single-level) BPMN models than in hierarchical models.

A second use is as on on-page connector, simply to reduce the clutter of crossing sequence
flows. It is used, for example, in tools like IBM Blueworks Live that draw the sequence flow
layout automatically. Tools supporting manual layout, like Microsoft Visio, let you precisely
arrange sequence flows to minimize crossing, but auto-layout tools are less good at this.

Chapter 7. Events | 111

Figure 7-33. Link event pair used as on-page connector

In Figure 7-33, the Link events labeled A mean that the sequence flow out of the catching Link
event is really an extension of the sequence flow into the throwing Link event. Whether
visually connecting Link throw-catch pairs in this way is clearer than crossing sequence flows
is a matter of opinion.

Event Subprocess
In BPMN Level 2, you can think of the actions on the exception flow of a boundary event as
the handler of that event. BPMN 2.0 introduced a second type of event handler called an event
subprocess. Event subprocesses are more easily mapped to BPEL than boundary event
handlers and, unlike boundary event handlers, are able to access the context (i.e., data and
state values) of the process level in which the event occurs. These are both really developer
issues related to executable BPMN, and thus beyond the scope of BPMN Level 2. However,
event subprocesses are useful constructs for non-executable modeling as well, if you care to
use them.

An event subprocess is defined within a particular process level, either the top-level process
or a regular subprocess. It works similar to a boundary event. If the trigger occurs while the
process level containing the event subprocess is running, the event subprocess is started.
Unlike a regular subprocess, an event subprocess has no incoming or outgoing sequence
flows. Instead, it has a triggered start event, such as a Message, Timer, or Error. Since the
trigger is only active while the process level is running, it acts more like an intermediate event
than a regular start event. An event subprocess may be either interrupting or non-interrupting,
as indicated by the start event border: solid for interrupting, dashed for non-interrupting, just
like a boundary event.

In the notation, an event subprocess is visually distinct from a regular subprocess. A
collapsed event subprocess is denoted by a dotted line boundary and a trigger icon in the top left

112 | Chapter 7. Events

corner (Figure 7-34, top). Expansion of the event subprocess may be either inline, inside an
enlarged rounded rectangle, or hierarchical, on a separate diagram (Figure 7-34, bottom).

Figure 7-34. Event subprocess Handle timeout defined for regular subprocess Perform
service (top); child-level expansion of Handle timeout (bottom)

In Figure 7-34, Handle timeout is an event subprocess defined inside Perform service, a regular
subprocess. It is triggered by a non-interrupting timer. The semantics are similar to a
boundary event. If Perform service takes longer than 4 hours, do not interrupt it but trigger the
event subprocess in parallel. When a non-interrupting event subprocess is triggered, the
containing process level is not complete until both the regular child-level process (Service
details…) and the event subprocess have completed. Processing then resumes on the normal
flow out of the regular subprocess.

An interrupting event subprocess works in a similar manner, except that the regular
subprocess is aborted when the event subprocess is triggered. When the event subprocess
completes, the process resumes on the normal flow out of the regular subprocess.

There is one exception to process continuation on the normal flow out of the regular
subprocess. An Error or Escalation end event of the event subprocess may throw an
exception to a matching boundary event on the regular subprocess (not on the event
subprocess). In that case, processing continues on the exception flow out of the boundary
event. (If a non-interrupting Escalation is thrown, processing continues in parallel on the
normal and exception flows.) This behavior is not clearly explained in the specification, but I
checked it out with other members of the BPMN 2.0 technical committee, and this is their
consensus opinion.

113

CHAPTER 8

8. Iteration and Instance
Alignment

BPMN provides a way to say that an activity, either task or subprocess, is not complete until it
is performed multiple times. In fact, it has two different ways to say that. In some cases, even
such repeating activities are inadequate to properly align an activity instance with the process
instance. We’ll discuss iteration in all its aspects in this chapter.

Loop Activity
A loop activity, indicated by a circular arrow marker at bottom center (Figure 8-1, left), is like
Do-While in programming. It means the same thing as the explicit gateway-loopback
diagram on the right: perform the activity once, and then evaluate the loop condition, a Boolean
data expression. If the condition is true, perform the activity a second time, and then evaluate
the loop condition again. This iteration can continue indefinitely, or you can establish an
upper limit. When the loop condition is false, the sequence flow out of the loop activity is
enabled.

Figure 8-1. Loop activity A (left) means the same as non-loop activity A with gateway-
loopback

Don’t use the loop marker and gateway-loopback together. That’s a loop within a loop,
probably not what you mean. The loop marker provides a more compact representation than
the gateway-loopback, but it hides the loop condition. For that reason, it is best to indicate the
condition in a text annotation. Note: A condition of the form Until X corresponds to the loop
condition if Not X; when X is true, Not X is false and the looping ends.

114 | Chapter 8. Iteration and Instance Alignment

With loop activities, the iteration is always sequential. You can’t start the second iteration
until you have finished the first, and the loop condition is true. Also, with loop, the number of
iterations is unknown when the first iteration starts. It is determined by evaluating the loop
condition at the end of each iteration.

Multi-Instance Activity
A multi-instance (MI) activity, denoted by a marker of 3 parallel bars at the bottom center, is
like For-Each in programming. It means perform the activity once for each item in a list. In a
single process instance there are multiple instances of the activity, and each activity instance
acts on one item in the list. What list? A multi-instance activity only makes sense when the
process instance data contains some kind of collection, such as items in an order. In an order
process, MI activity Check stock means check the stock of each order item.

Each order does not have the same number of items, but when Check stock begins for a
particular order, you already know how many iterations will be required. It’s the number of
items in the order. Often the list involved is obvious from the activity name, but if not, best to
indicate it in a text annotation, such as For each X. Knowing the number of iterations in
advance is one fundamental difference between multi-instance and loop activities. Another is
that MI instances may be performed in parallel. If so, the MI marker is 3 vertical bars. If, on
the other hand, the instances are always performed sequentially, the marker is 3 horizontal
bars. A sequential MI activity is not the same as a loop.

Figure 8-2. MI activity A (left) is the same as n parallel instances of non-MI activity A
followed by a join (right).

In Figure 8-2, MI activity A (left) means the same thing as n parallel non-MI activities (right).
The MI activity is not complete until all its instances are complete. Technically, other
completion conditions are allowed by the spec, but I have never seen them in the wild and
they are indistinguishable in the diagram from the usual all-complete condition. BPMN 2.0
actually allows you to say that a Signal event is generated, either as each instance completes
or just when the first instance completes, and caught on the boundary of the MI activity.

Chapter 8. Iteration and Instance Alignment | 115

So perhaps it is just a Method and Style convention, but I think best to interpret MI as
requiring all instances to complete before the MI activity is complete. This is almost always
the modeler’s intent. A Terminate or interrupting boundary event on a multi-instance activity
will immediately abort all running instances.

Using Repeating Activities
In my BPMN training, one of the exercises formerly used for certification involved a hiring
process. Each instance of the process is a job opening. The process starts with defining and
approving the position, followed by posting the job, accepting applications, interviewing
candidates, and ultimately hiring one of them. It’s a familiar process to most students, but
even so, I would see a disheartening number of certification submissions that looked like this:

Figure 8-3. A common beginner mistake

What is the problem here? Take a look until you see it.

Each instance of the process represents a separate job opening. How many applications can
each instance handle? In Figure 8-3, it’s just one! After the first Application message advances
the instance to Screen and Interview, there is nothing to accept the next one. We need some
way to indicate that there are multiple incoming Application messages for each instance of our
process. Maybe repeating activities can help.

How many applications will we receive? Well, we don’t know. We don’t have a list of them
before we begin, so we must use a loop activity, not MI. The simplest thing would be to wrap
the Message event and Screen and Interview in a loop subprocess with the loop condition Until
ready to make offer:

116 | Chapter 8. Iteration and Instance Alignment

Figure 8-4. A valid but impractical solution

This technically works, but it has a serious practical problem. The second iteration cannot
begin until the first is complete. That means completing the interview process, which might
take two or three weeks. If each iteration takes too long before we even look at the next
applicant, this process is not going to work. If we are going to use a loop, it has to be
relatively fast.

A more practical approach might be to have a fast Receive and Screen loop, followed by an MI
Interview subprocess. Receive and Screen just sorts applicants into viable candidates – those
who match the basic qualifications – and non-viable ones. Let’s say the loop condition is Until
5 viable candidates. Then Interview can be MI because we have a list. We can conduct the
interviews of all five candidates in parallel. When they are all done, we go on to Make offer.
Now it looks like this:

Figure 8-5. A more practical process model

Chapter 8. Iteration and Instance Alignment | 117

Figure 8-5 is a practical solution to the hiring process problem, but it too is imperfect. The
basic problem is that Receive and Screen and Interview cannot overlap in time. We cannot start
any interviews until we have all five viable candidates, and once we begin the interviews we
cannot look at any more applicants. This may be the way your process actually works, but
most people say, no, we’d like to begin interviews as soon as we have one viable candidate,
and keep looking at new applicants after we’ve started interviewing.

You cannot do that with repeating activities. In fact, you cannot do that in one BPMN
process. You need more than one.

Using Multiple Pools
Method and Style generally recommends you model an end-to-end business process as a
single BPMN process, if you can. But sometimes you cannot do that, and the reason is that
activity instances are not aligned across the whole end-to-end process. There is no 1:1
correspondence between them. In that case, you may need to model the end-to-end process
as multiple pools, that is, multiple BPMN processes. Our hiring process scenario provides a
good example.

Recall that a Message start event has that magical ability to create a new process instance
whenever the start message arrives. We don’t need to know how many start messages will
arrive. The Message start event creates a new instance for each one. And there is no rule that
one instance must complete before the next one starts. The instances may overlap in time in
any manner. This combines the best parts of loop and multi-instance activities, without their
constraints.

This suggests the alternative solution to the hiring process problem shown in Figure 8-6. Its
principal feature is the hiring has been split into two pools instead of the normal one. The
reason for two pools is not because the “participants” are different. In fact, the activity
performers – the hiring department and HR – are exactly the same people in both. They are
separate pools because they are independent BPMN processes. And the reason they are separate
processes is that their respective instances do not have 1:1 correspondence.

In Hiring Process, the instance corresponds to a single job opening, just as we had in the
repeating activity structure. In Evaluate Candidate, the instance is a single applicant. A new
instance of Evaluate Candidate is created whenever the Resume start message is received. These
instances can overlap in time in any fashion, and we don’t need to know how many there are.

Note that Evaluate Candidate has what looks like a multi-instance marker at bottom center,
indicating a multi-instance participant. This marker only has significance in a collaboration
between pools. It signifies that in the collaboration diagram there are multiple instances of
this pool with respect to each instance of the other pool. In Figure 8-6 that means multiple
instances of Evaluate Candidate for each instance of Hiring Process, i.e., multiple applicants for
each job opening.

118 | Chapter 8. Iteration and Instance Alignment

Figure 8-6. Multi-pool solution to the hiring process problem

In the multi-pool structure, after posting the job, Hiring Process just waits for a message from
Evaluate Candidate indicating that an applicant has been selected and has accepted the offer.

We can put a timeout on waiting for that message by using an event gateway. Each instance
of Evaluate Candidate could take weeks from beginning to end, but unlike the simple loop in
Figure 8-4, this works because instances of Evaluate Candidate can overlap in time.

The multi-pool solution avoids the limitations of repeating activities, but it is harder for many
people to understand. Also, you must deal with the problem of coordinating the state of the
two pools. Remember, in this structure these are independent processes. While Hiring Process
and Evaluate Candidate are technically peers, Hiring Process is effectively the parent. It needs to
enable Evaluate Candidate when the job is posted and disable it when the job is filled.

Figure 8-6 illustrates two ways of synchronizing the state. One uses a data store representing
the job status in a database. Hiring Process updates the data store when the job is opened,
filled, or abandoned, and Evaluate Candidate queries it immediately upon instantiation. Once
the job is filled, new applicants just receive a Position Closed message. But when the job is
filled we also need to terminate any running instances of Evaluate Candidate. For that we
throw a Signal event (possibly a Message event would work just as well). We cannot attach a
boundary event to a top-level process, but we can use an interrupting event subprocess. Upon
receiving the Signal, it terminates Evaluate Candidate and provides any cleanup actions, such
as sending the Position Closed message.

Chapter 8. Iteration and Instance Alignment | 119

Batch Processes
The multiple pool solution may seem obscure, but for end-to-end process modeling you may
find yourself using it frequently. A common use case is where one part of the process
operates on “batches” of items that are processed one at a time in another part of the process.
For example, in the order process examples used in this book, the process instance is a single
order, meaning that end-to-end processing is one order at a time. But in real order processes,
there may be a mainframe batch program that runs one or more times a day to post all orders
received since the previous batch. It is not really correct to insert an activity Post order batch in
the middle of a process where the instance is a single order, since that suggests Post order batch
is repeated for each individual order.

Figure 8-7. Instance mismatch between activity and process

Post order batch is better represented as an independent top-level process, with a Timer start
event signifying a scheduled process, that interacts with the order process. As we saw with
the hiring process example, there are two ways to model the interaction, data store (Figure
8-8) and Message (or Signal) events (Figure 8-9).

Figure 8-8. Two pools interacting via data store

In Figure 8-8, the Order process updates the Orders database with each order as it is received.
Once a day, the Post order batch process retrieves all the new orders, runs the batch, and
updates the Orders database with the posting data. The Order process waits until the batch
posting is scheduled to be complete, retrieves the posting data for that order, and continues.

120 | Chapter 8. Iteration and Instance Alignment

In Figure 8-9, collection of daily orders is the same, but the posting info is returned to the
Order process in a message. The process waits for the message, and continues as soon as the
message arrives. With either the structure of Figure 8-8 or Figure 8-9, it is not necessary to
show the process logic of Post order batch if your objective is modeling the Order process. You
could model it as a black-box pool. The key thing is you cannot model the batch posting as an
activity inside the Order process.

Figure 8-9. Two pools interacting via data store and message

Instance Alignment
The multi-pool structure works in other cases besides mainframe batch programs. For
example, in many of the examples in this book, an invoice is sent to the customer with each
order. But for regular customers it is not uncommon to send a bill every month, not with
every order. In that case, you cannot make Send monthly statement an activity in the Order
process. It must be part of a separate Billing process that runs every month (Figure 8-10).

Chapter 8. Iteration and Instance Alignment | 121

Figure 8-10. Billing and Payment are separate pools because the instance is not an order

Similarly, customer payments are not once per order or even necessarily once per month. An
instance of the Payments process is once per payment. Thus if the Order process does not end
until the order is paid for, multiple interacting pools are required.

123

CHAPTER 9

9. Process Splitting and Merging

We have already covered in detail the most common splitting and merging behaviors in
BPMN:

• Exclusive split based on a data condition, using the XOR gateway
• Exclusive split based on the first event to occur, using the event gateway
• Unconditional parallel split, using either the AND gateway or multiple sequence

flows out of an activity or start event
• Merge of exclusive alternatives by direct connection (no gateway)
• Join of parallel paths, using AND gateway

In this chapter we will cover a few additional splitting and merging behaviors.

Conditionally Parallel Flow
The parallel (AND) gateway represents an unconditional split, meaning in every instance the
process splits into two or more parallel paths, one for each gate. But what if you want to say
that the parallel split is conditional, meaning each path may or may not be enabled for a
particular process instance? It does not happen often, but BPMN has a way to say it… in fact,
two different ways!

OR Gateway Split
The inclusive gateway, also called the OR gateway, with the O symbol inside, represents
conditional split. Like the exclusive (XOR) gateway, each gate has a Boolean condition, but
here the conditions are independent. More than one of them could be true, and each gate with
a true condition is enabled. If two or more are enabled, those paths run in parallel.

In Figure 9-1, after Draft contract we always Conduct financial review but only Conduct financial
review if it is a technical contract. If we do both, the financial review and technical review
occur in parallel. An OR gateway split requires a condition on each of its gates. If the gate is
always enabled, use the label Always.

124 | Chapter 9. Process Splitting and Merging

Figure 9-1. Conditional split using OR gateway

Figure 9-2 is slightly different. Now we only Conduct financial review if the cost is over $10,000,
and we only Conduct technical review if it is a technical contract. If we do both, they occur in
parallel. The gate with the tickmark is called the default flow. Default flow in BPMN does not
mean always or even usually; it means otherwise. The default flow is enabled if and only if no
other gate is enabled for the process instance. In this example, Conduct quick review only
occurs if the cost is not over $10,000 and it is not a technical contract. A gateway may have at
most one default flow.

Figure 9-2. Default flow means otherwise

Conditional Sequence Flow
Figure 9-3 illustrates a second way to show conditionally parallel flow, called conditional
sequence flow. Here we have no gateway at all, but two of the sequence flows have a little
diamond on the tail, indicating enablement only if its condition is true. This diamond-on-the-
tail notation is only allowed for sequence flows out of an activity. In the XML, sequence flows
out of an XOR gateway or OR gateway are also conditional, but in the notation there are no
diamonds on the tail for sequence flows out of a gateway. (I have seen BPMN tools that put
the diamond on the tail of a sequence flow out of a gateway, but this is incorrect.) The default
flow, indicated by the tickmark, means the same thing as it does out of a gateway – otherwise.
The default flow is enabled only if none of the other outgoing sequence flows are enabled.

Chapter 9. Process Splitting and Merging | 125

Figure 9-3. Conditional sequence flow

It is best to reserve conditional sequence flows for conditionally parallel flow. If you mean
exclusive choice, use an XOR gateway instead. In Figure 9-4, the left diagram implies
Approved and Rejected could both be true, which is incorrect. The middle diagram is
technically correct, but it only works with two outgoing sequence flows. If there are two
conditional sequence flows plus a default flow, does the modeler mean exclusive choice? In
my experience, usually the answer is yes… which is incorrect. To eliminate ambiguity, use
XOR gateway (Figure 9-4, right) when you mean exclusive choice.

Figure 9-4. Don’t use conditional sequence flow when you mean exclusive choice

Merging Sequence Flows
Proper modeling of the merge of multiple sequence flows into one depends on two factors:
1) whether the flows are exclusive alternatives, unconditionally parallel, or conditionally
parallel, and 2) the intended merging behavior.

Merging Alternative Paths
If the paths to be merged represent exclusive alternatives, just merge them directly (Figure 9-5,
left). In order to tell if they are exclusive alternatives, you need to look upstream to see how
they were split in the first place. If they were split by an XOR gateway, event gateway, or an
interrupting boundary event, they are exclusive alternatives.

126 | Chapter 9. Process Splitting and Merging

Figure 9-5. Merge alternative paths directly into an activity. You may use XOR gateway to
merge into another gateway.

An XOR gateway used as a merge is the same as no gateway at all. It simply passes through
each incoming sequence flow as it arrives. For merging alternative paths into an activity it is
completely redundant, so best to omit it. However, you may want to use it to merge
alternative paths into another gateway (Figure 9-5, right), since the behavior of a gateway
with multiple inputs and multiple outputs may be ambiguous from the diagram.

AND Gateway Join
If paths are unconditionally parallel, usually you want to join them (Figure 9-6, right). A parallel
join is modeled as an AND gateway with multiple sequence flows in and one out. It waits for
all incoming sequence flows to arrive before continuing. We don’t need to use a gateway to
join into a None end event, but a parallel join into an activity always requires one.

Figure 9-6. To join parallel paths into an activity, use AND gateway

Multi-Merge
Even though the parallel gateway is optional for a split, you should not omit the gateway for
the join (Figure 9-6, left). The spec technically allows omitting the gateway – it’s called multi-
merge – but it means the activity following the merge (Conduct final review) is triggered
multiple times, once for each incoming sequence flow, and the same goes for all downstream
activities. Using an XOR gateway as a merge passes through each sequence flow as it arrives,
the same as no gateway at all. Thus with parallel inputs an XOR gateway also signifies multi-
merge, not a join. Multi-merge is almost never what you mean, and I recommend avoiding it.

OR Gateway Join
If some of the parallel paths to be joined are conditional, meaning not enabled in every process
instance, you may still join them, but you use an OR gateway, not an AND gateway. An OR

Chapter 9. Process Splitting and Merging | 127

gateway join is like an AND gateway join except that it ignores incoming sequence flows that
are not enabled for this process instance.

Figure 9-7. OR gateway join of conditional sequence flows

For example, in Figure 9-7 either one or two of the flows could be enabled in any process
instance. The OR gateway join ignores the incoming sequence flows that are not enabled in
this instance. Note we did not need the OR gateway in Figure 9-3 because a join is always
implied into a None end event.

Figure 9-8. Another use case for OR gateway join

Figure 9-8 provides another example. Even though we have an unconditional parallel split,
only two of the three sequence flows into the join can arrive in any process instance. An AND
gateway join requires all three; the OR gateway join ignores the “dead path” in this process
instance.

A third example is joining the exception flow path, in the case of a non-interrupting boundary
event, with the normal flow path. The normal flow exit always occurs, but the exception flow
occurs only if the event is triggered. Thus the flows are conditionally parallel and cannot be
joined by an AND gateway; the gateway must be OR.

Discriminator Pattern
There is one more merging behavior worth discussing. It is called the Discriminator pattern,
and it uses the complex gateway, with the asterisk symbol inside the diamond. A complex
gateway does not necessarily mean Discriminator. It means some user-defined behavior
other than that described by AND, OR, or XOR gateways. There are very few of those, and
the only one that occurs with any frequency at all is Discriminator.

128 | Chapter 9. Process Splitting and Merging

Figure 9-9. Discriminator pattern

The Discriminator pattern passes the first incoming sequence flow to arrive and blocks all the
rest. When multiple activities are running in parallel, Discriminator lets you start something
else when any one of them completes. For example (Figure 9-9), we can start the executive
review with the output of either the financial or technical reviews, whichever comes first.
That’s Discriminator. If we had no gateway at all into Conduct executive review, that task
would be triggered twice (multi-merge), not what we want.

Note the complex gateway requires a text annotation to explain the intended behavior. The
complex gateway is not part of the Level 2 palette, as defined by the Analytic subclass of
BPMN 2.0.

129

CHAPTER 10

10. Transactions

Although it goes beyond the scope of the Level 2 palette, BPMN provides native support for
transactions. The term transaction refers to the coordinated execution of multiple activities
such that they either all complete successfully or the system is restored to a state equivalent to
none of them completing. An example familiar from everyday experience is electronic funds
transfer in a bank. The transaction debits one account and credits another account, perhaps at
another financial institution, an equal amount. This requires the coordinated action of two
databases, possibly two independent systems. If, for some reason, the debit and the credit
cannot both be executed simultaneously, neither of them should be executed. What absolutely
must not happen is that one account is debited without the corresponding credit in the other
account (or vice versa).

ACID Transactions
This example and similar distributed database operations are known in computer science as
ACID transactions. Here ACID stands for:

• Atomic – indivisible, all-or-nothing behavior

• Consistent – preventing an inconsistent state of the system, such as a debit with no
corresponding credit

• Isolated – the systems managing each account are locked during execution of the
transaction

• Durable – the state of the participating systems is stored in a database, not just in
memory, so it can be restored in case of a crash

In IT systems, ACID transactions are typically implemented using a special protocol called
two-phase commit. In two-phase commit, a piece of software called a transaction manager first
communicates with the various resources performing each side of the transaction, in this case,
the debit and the credit, to ensure they are all ready to execute. Only if all resources report

130 | Chapter 10. Transactions

that they are ready is the transaction committed. Otherwise they are rolled back to the state
before the transaction was initiated.

Business Transactions
BPMN implements a similar idea for business processes. In BPMN, a subprocess marked as
transactional means that its component activities must either all complete successfully or the
subprocess must be restored to its original consistent state. However, business transactions are
usually not ACID transactions coordinated via two-phase commit. The reason is they fail the
I, or isolation, requirement. In order to isolate, or lock, the resources performing the
component activities of the transaction, the transaction must be short-running, taking
milliseconds to complete. For business transactions you cannot usually make that assumption.
Business transactions are long-running, and the resources associated with their component
tasks are not locked while the transaction is in progress. Instead, each activity in the
transaction executes normally in its turn, but if the transaction as a whole fails to complete
successfully, each of its activities that has completed already is undone by executing its
defined compensating activity.

Examples of transaction recovery by compensation are familiar from everyday experience.
Suppose you purchase some item online via credit card, but it turns out later that the item is
unavailable from the company’s suppliers. You will see on your credit card statement both a
charge for the item and a subsequent matching credit cancelling the charge. The credit is the
compensating activity for the charge. This is not the same as an ACID transaction that
reserves the item in inventory before it charges the credit card. In that case you would see
neither the charge nor the credit on your statement, because the transaction was never
committed in the first place.

BPMN provides built-in support for business transactions. A subprocess with a double border
(Figure 10-1) denotes it as a transaction. Activities within the transaction that need to be
undone if the transaction fails are linked with their respective compensating activities in the
BPMN diagram by Compensation boundary events. And BPMN provides other events that
signal transaction failure and initiation of compensation.

Figure 10-1. Transactional subprocess

Compensation does not include the handling of the exception that caused the transaction to
fail. It just means restoring the original consistent state of the system before the transaction
began, by undoing those parts of the transaction that completed before the point of failure.
Once compensation is complete, exception handling continues in the normal manner.

Chapter 10. Transactions | 131

Compensation Boundary Event and Compensating Activity
The Compensation boundary event is used to link an activity to its undoing, or compensating,
activity. It is not a normal boundary event, however. It has no outgoing sequence flow.
Instead it has an association linking it to a single compensating activity (Figure 10-2). Both the
Compensation event and compensating activity are identified by the rewind symbol. The
purpose of the Compensation boundary event is simply to link an activity with its associated
compensating activity.

Figure 10-2. Compensation boundary event and compensating activity

Unlike a regular boundary event, a Compensation boundary event can only be triggered after
the activity to which it is attached completes successfully. If the activity has not started or is
still running when the transaction fails, or if the activity itself completes unsuccessfully, its
compensating activity is not run when the transaction fails.

Alternatively, a Compensation event subprocess – an event subprocess with a Compensation
start event – may be used as the compensating activity.

Cancel Event
The Cancel event, with the X icon, is a special form of Error event that may only be used with
transactional subprocesses (Figure 10-3). It is used when the source of transaction failure is
within the transaction subprocess, not after completion. Like Error, Cancel supports throw-
catch from an end event of the transactional subprocess to a boundary event or event
subprocess. Also, like Error it is always interrupting; there is no non-interrupting variant of
Cancel. Its meaning is identical to Error except that before beginning the error handling,
represented by exception flow or event subprocess, Cancel implicitly commands
compensation.

Figure 10-3. Cancel boundary event on transactional subprocess

When the transaction is Canceled, all successfully completed activities within it that have
defined compensating activities are undone by executing those compensating activities. Once

132 | Chapter 10. Transactions

compensation is complete, error handling commences by executing the exception flow or
event subprocess associated with the Cancel event.

Any other type of interrupting boundary event, such as Error, on a transactional subprocess
aborts the transaction without compensation.

Compensation Throw-Catch
In addition to Cancel, BPMN provides an alternative way to directly command compensation
by a throwing Compensation intermediate event or Compensation end event. Unlike Cancel, the
throw-catch target is not a boundary event, but the activity to be compensated. This
Compensation throw-catch does not require a transactional subprocess.

A use case for Compensation throw-catch is when the need to undo the transaction is
determined after the transaction is complete. The following examples illustrate the use of
Cancel and Compensation events.

Using Compensation
To properly define compensating activities you need to think about the various points, either
within the transactional subprocess or after its conclusion, where the transaction could
possibly fail, and which possibly completed activities would need to be undone if that occurs.

Consider a simple travel booking example in which the transaction consists of two activities,
reserving the seat and charging a credit card, always performed in that order (Figure 10-4).
The only time this transaction requires compensation is if the credit card charge fails. In that
case, the airline reservation must be undone using a compensating activity. If the activity
reserving the seat fails (e.g., no seats available) there is no successfully completed activity to
undo. Even though a compensating activity is defined, it is not executed unless the original
activity completes successfully. Also, no compensating activity need be defined for the
charge, since if it completes successfully the transaction as a whole completes successfully.

Figure 10-4. Transaction compensation, simple case

Chapter 10. Transactions | 133

Now let’s consider a more complex case, in which multiple flights and hotels must be booked
to complete the itinerary (Figure 10-5). The order of booking each leg, hotel and air, is
indeterminate. If any leg of the itinerary cannot be booked successfully, the transaction fails. If
all legs of the itinerary can be booked, then the credit card is charged. If the credit card charge
fails, the transaction also fails.

Figure 10-5. Transaction compensation, complex case

Here you can see the convenience of compensation, since there are many potential points of
failure in this transaction. The state of each of the individual leg bookings at the point of
failure cannot be known in advance. If you had to consider all the possible combinations and
add paths to the diagram describing what to do if failure occurs in one state versus another, it
would be a nightmare. With compensating activities, BPMN just applies a simple rule: if the
activity has completed successfully when compensation is commanded, then execute its
compensating activity; if it has not, do not execute the compensating activity.

In Figure 10-5, if any of the leg booking activities – that is, any instances of the multi-instance
Book Hotel and Book Air activities – fail, the resulting Cancel throw-catch undoes just those
instances that have already completed. If all of the leg booking instances complete but the
credit card charge fails, then that Cancel undoes all of the bookings.

Now let’s take it one step further. Suppose that after the transaction is complete, the customer
for some reason decides to cancel the trip. This might not be modeled as part of the same
process, but let’s say in this case it was. The Book travel transaction is complete, but we want to
undo it after the fact. This is a good use case for the direct Compensation throw-catch. We can’t
use Cancel because a Cancel throw must come from within the transactional subprocess.

134 | Chapter 10. Transactions

Figure 10-6 illustrates. For argument’s sake, we’ll say that once all the bookings are complete,
the travel agency requests final confirmation from the customer before charging the credit
card.15 The travel agency waits 24 hours before charging the customer in case of cancellation.
To wait for either 24 hours or the cancellation message, we use an event gateway. If a
cancellation message is received, we can still undo the bookings using the previously defined
compensating activities, but we cannot use a Cancel event because the transactional
subprocess is already complete. Here we use a throwing Compensation event Undo Book
Travel, targeted at the transactional subprocess, Book Travel. This triggers all of the
compensating activities within that subprocess.

Figure 10-6. Throwing Compensation event

Note that compensation does not handle the exception. It merely rolls back the transaction to
its initial state. The exception handling notifying the customer, perhaps adding a cancellation
fee to the invoice, must be added in the exception flow.

15 Here we use an AND-join before the confirmation Message end event because we want to send
the request only once. Connecting Book Air and Book Hotel directly to the end event would send it
twice.

135

CHAPTER 11

11. The Rules of BPMN

Before concluding Level 2 modeling, we return again to the topic of BPMN style. In the end,
it’s all a matter of following the rules, both the rules of the BPMN spec and the style rules.
Most of the bad BPMN in the world – diagrams that are confusing, ambiguous, or just make
no sense at all – could be eliminated if the modeler would simply follow the rules. That is easy
to say, but less easy in practice. Modelers depend on tools to validate their BPMN models and
warn them about violations, and tool vendors depend on the BPMN specification to define the
validation rules. The difficulties start with the spec itself.

Sources of BPMN Truth
It is inexcusable, but the BPMN 2.0 specification – all 500+ pages of it – never enumerates its
rules. There should be an Appendix where the rules are listed in one place, but there is not.
One member of the BPMN 2.0 Finalization Task Force admitted to me that they had wanted to
provide such a list but “ran out of time.” I don’t know, but seven years seems like enough
time to me.

Moreover, the spec does not even provide a single source of truth! It provides, by my count,
three separate sources, and they do not agree in every case. The first source is the BPMN
metamodel, expressed in UML class diagrams and their serialization in OMG’s XML Metadata
Interchange (XMI) format. The second source is the schema, an alternative formulation of the
metamodel in “normal” XML, i.e., based on the XML Schema Definition (XSD) language.

Both the metamodel and its XSD equivalent define the various BPMN elements, their
attributes, and the relationships between them. The XSD and XMI serializations of the
metamodel are nominally equivalent, but differences between the two languages prevent
perfect agreement. For example, the metamodel says a sequence flow may only connect to a
flow node, meaning an activity, gateway, or event, while the XSD allows connection to any
BPMN element. That means the rule that a sequence flow may only connect to a flow node
cannot be tested by schema validation… but it remains a rule nonetheless.

136 | Chapter 11. The Rules of BPMN

OMG’s Model Driven Architecture emphasizes XMI, but XSD is far more often used by
software tools and developers. It is the basis of XML standards, model interchange, SOA, and
web services. Thus, in the BPMN Implementer’s Guide section of this book, most of the
discussion is based on the XSD, not XMI.

In any case, both the XMI and XSD only define basic rules for each BPMN element class as a
whole (e.g., boundary events), not all the rules specific to individual elements (e.g., Error
boundary events). Most rules about individual element types are sprinkled throughout the
spec narrative, in 500 pages of tables and text that refine and override the metamodel. The
spec narrative thus constitutes the third source of truth, a sometimes ambiguous one. Some
rules are stated plainly in the text, while others must be inferred.

Further muddying the waters is the fact that the spec references the BPMN semantic elements
not the shapes and symbols. Usually this presents no problems since, for the most part, each
semantic element corresponds to a single shape/symbol combination. But some shapes have
no corresponding semantic element. For example, there is no semantic Multiple event element,
even though there is a distinct shape for it in the notation. A Multiple event shape simply
means an event with more than one event definition in the semantic model.

Finally, some of the “requirements” stated in the BPMN spec are applicable only to executable
processes. They involve technical details omitted in most BPMN models and not represented
in the notation.

For all these reasons, each BPMN tool is forced to make up its own list of validation rules. Even
where tools agree on the content of the rule, they will differ on the text of it. There simply is
no official list of BPMN rules.

BPMN Rules for Level 2 Process Modeling
If OMG won’t provide a list, I will. Below is my list of the most important official rules for
Level 2 (non-executable) process modeling. Some readers may say about one or two of them,
“I don’t see that rule in the BPMN spec.” I have two responses to that. First, many of the
rules of the spec are implied by other parts of the specification. And second, if it makes them
feel better about it, those readers could always consider it a style rule. Good BPMN means
conforming to both the official rules and the style rules.

Sequence Flow
1. A sequence flow must connect to a flow node (activity, gateway, or event) at both

ends. Neither end may be unconnected.

2. All flow nodes other than start events, boundary events, and catching Link events
must have an incoming sequence flow, if the process level includes any start or end
events. [Exceptions, not part of the Level 2 palette: compensating activity, event
subprocess.]

Chapter 11. The Rules of BPMN | 137

3. All flow nodes other than end events and throwing Link events must have an
outgoing sequence flow, if the process level includes any start or end events.
[Exceptions, not part of the Level 2 palette: compensating activity, event subprocess.]

4. A sequence flow may not cross a pool (process) boundary.

5. A sequence flow may not cross a process level (subprocess) boundary.

6. A conditional sequence flow may not be used if it is the only outgoing sequence flow.

7. Sequence flow out of a parallel gateway or event gateway may not be conditional.
[Note: On sequence flows out of gateways, conditional is an invisible attribute; the
conditional tail marker is suppressed on sequence flows out of gateways.]

8. An activity or gateway may have at most one default flow.

Message Flow
9. A message flow may not connect nodes in the same process (pool).

10. The source of a message flow must be either a Message or Multiple end event or
throwing intermediate event; an activity; or a black-box pool.

11. The target of a message flow must be either a Message or Multiple start event,
catching intermediate event, or boundary event; an activity; or a black-box pool.
[Exceptions, not part of the Level 2 palette: event subprocess Message or Multiple
start event.]

12. Both ends of a message flow require a valid connection. Neither end may be
unconnected.

Start Event
13. A start event may not have an incoming sequence flow.

14. A start event may not have an outgoing message flow.

15. A start event with incoming message flow must have a Message or Multiple trigger.

16. A start event may not have an Error trigger. [Exceptions, not part of Level 2 palette:
event subprocess start event].

17. A start event in a subprocess must have a None trigger. [Exceptions, not part of
Level 2 palette: event subprocess start event].

End Event
18. An end event may not have outgoing sequence flow.

19. An end event may not have incoming message flow.

20. An end event with outgoing message flow must have Message or Multiple result.

138 | Chapter 11. The Rules of BPMN

Boundary Event
21. A boundary event must have exactly one outgoing sequence flow. [Exception, not

part of the Level 2 palette: Compensation.]

22. A boundary event trigger may include only Message, Timer, Signal, Error, Escalation,
Conditional, or Multiple. [Exceptions, not part of Level 2 palette: Cancel,
Compensation, Multiple-Parallel.]

23. A boundary event may not have incoming sequence flow.

24. An Error boundary event on a subprocess requires a matching Error throw event.

25. An Error boundary event may not be non-interrupting.

26. An Escalation boundary event on a subprocess requires a matching Escalation throw
event.

Throwing or Catching Intermediate Event
27. An intermediate event with incoming message flow must be catching type with

Message or Multiple trigger.

28. An intermediate event with outgoing message flow must be throwing type with
Message or Multiple trigger.

29. A throwing intermediate event result may include only Message, Signal, Escalation,
Link, or Multiple. [Exceptions, not part of Level 2 palette: Compensation.]

30. A catching intermediate event trigger may include only Message, Signal, Timer, Link,
Conditional, or Multiple.

31. A throwing Link event may not have outgoing sequence flow.

32. A catching Link event may not have incoming sequence flow.

Gateway
33. A gateway may not have incoming message flow.

34. A gateway may not have outgoing message flow.

35. A splitting gateway must have more than one gate.

36. Gates of an event gateway may include only a catching intermediate event or Receive
task.

Process (Pool)
37. A process must contain at least one activity.

38. Elements of at most one process may be contained in a single pool.

Chapter 11. The Rules of BPMN | 139

39. A pool may not contain another pool. If a child-level subprocess expansion is
enclosed in a pool, that pool must reference the same participant and its associated
process as the parent level.

Style Rules for Level 2 Process Modeling
The official rules of the spec allow a diagram to be “valid” but ambiguous in meaning. Style
rules are Method and Style conventions, consistent with the official rules, intended to make the
process logic clear from the diagram alone. The most important style rules are listed below.

Labeling
The label of a diagram shape corresponds to the name attribute of the semantic element.

1. An activity should be labeled, ideally VERB-NOUN.

2. Two activities in the same process should not have the same name, unless they are
both call activities.

3. A triggered start event should be labeled to indicate the trigger condition.

a. A Message start event should be labeled “Receive [message name]“.

b. A Timer start event should be labeled to indicate the process schedule.

c. A Signal start event should be labeled to indicate the Signal name.

d. A Conditional start event should be labeled to indicate the trigger condition.

4. A boundary event should be labeled.

5. The label of an Error boundary event on a subprocess should match the label of a
child-level Error end event.

6. The label of an Escalation boundary event on a subprocess should match the label of
a child-level throwing Escalation event.

7. A throwing intermediate event should be labeled.

8. A catching intermediate event should be labeled.

9. Paired Link events should have matching labels.

10. Throwing and catching events corresponding to the same Signal event definition
should have matching labels, if they occur in the same BPMN model.

11. An end event should be labeled with the name of the end state.

12. A splitting XOR gateway should have at most one unlabeled gate.

13. A splitting XOR or inclusive gateway should be labeled if any of its gates are
unlabeled.

140 | Chapter 11. The Rules of BPMN

14. The label of a child-level diagram (page) should match the name of the subprocess.

End Event
15. Two end events in a process level should not have the same name. If they signify the

same end state, combine them; otherwise give them distinct names.

16. If a subprocess is followed by a yes/no gateway, at least one end event of the
subprocess should be labeled to match the gateway label.

Subprocess Expansion
17. Only one start event should be used in a subprocess, unless it is a parallel box.

18. A child-level expansion should not be enclosed in an expanded subprocess shape if
parent and child process levels are represented by separate diagrams.

Message Flow
19. A message flow should be labeled directly with the name of the message.

20. A Send task should have an outgoing message flow.

21. A Receive task should have an incoming message flow.

22. A Message start event should have an incoming message flow.

23. A catching Message event should have incoming message flow.

24. A throwing Message event should have outgoing message flow.

25. A message flow from a collapsed subprocess should be replicated in the child-level
diagram.

26. A message flow to a collapsed subprocess should be replicated in the child-level
diagram.

27. An incoming message flow in child-level diagram should be replicated in the parent
level.

28. An outgoing message flow in child-level diagram should be replicated in the parent
level.

Model Validation
It is far easier to comply with the rules of BPMN when your tool can validate models against
them and list all the violations. Many BPMN tools provide some type of model checking
against the official BPMN rules. There is only one, to my knowledge, that has implemented
the style rules: Process Modeler for Visio, from itp commerce.

Chapter 11. The Rules of BPMN | 141

Figure 11-1. Validation against both official rules and style rules in itp commerce tool.

Figure 11-1 illustrates validation of a particularly error-filled model in the itp commerce tool.
Elements with violations are tagged with icons in the diagram – x for a spec violation, i for a
style rule violation – and you can navigate in the tool easily between a selected shape and its
associated violations, or from a violation in the list to its shape.

I liken model validation to spelling and grammar checking in a word processing program.
Many of the violations are the equivalent of “typos,” inadvertent or careless errors. You don’t
need to continuously validate as you model, but it’s a good idea to do validate before you
declare the model ready for release to others… and, of course, you must fix all of the reported
errors.

If your tool can export a model in the BPMN 2.0 XML interchange format, I have created an
online tool that will validate it against both the spec rules and the style rules. You upload the
XML to the website and it creates the validation report. For further details, see the website for
this book, www.bpmnstyle.com.

143

PA RT IV:
 BPMN I M P L E M E N T E R’S GU I D E –

 NO N-EX EC U TA B L E BPMN

145

CHAPTER 12

12. BPMN 2.0 Metamodel
and Schema

The world generally understands BPMN to mean Business Process Modeling Notation, and
that is what it stood for in BPMN 1.2. But actually OMG changed the acronym in version 2.0
to stand for Business Process Model and Notation. In fact, most of the work that went into the
BPMN 2.0 specification had nothing to do with the notation, the shapes and symbols, which
were left mostly unchanged from BPMN 1.2. It had to do with defining a metamodel for
BPMN, a formal specification of the semantic elements comprising a BPMN model and their
relationships to each other. All valid BPMN models must conform to the specifications of the
metamodel.

Metamodel elements are defined as object classes with defined required and optional attributes.
Some classes are subtypes of other classes and inherit their attributes, while adding more of
their own. A model element may be a subtype of more than one class, and inherits the
attributes of all of them. Some classes, like Root Element or Base Element, are purely abstract,
not used directly in BPMN models. Their purpose is merely to provide a single point of
definition of attributes shared among its subclasses.

In the BPMN 2.0 specification document16, the metamodel is represented by UML class
diagrams, augmented by tables and text in the narrative. For example, Figure 12-1 depicts the
Definitions class. The classes are organized in sets called packages. The packages are layered
for extensibility, each layer building on and extending lower layers. Many elements of the
four Core packages are shared by BPMN’s three types of models: Process, Collaboration, and
Choreography. In this book we are concerned only with Process and Collaboration models.

16 The spec document can be found at http://www.omg.org/spec/BPMN/2.0/PDF.

146| Chapter 12. BPMN 2.0 Metamodel and Schema

The metamodel is also published in two alternative XML formats, OMG’s XML Metadata
Interchange (XMI) and W3C’s XML Schema Definition (XSD) 17. They are nominally
equivalent representations of the BPMN metamodel, although XSD cannot represent certain
relationships of the UML, such as multiple inheritance. XSD is the language of “normal”
XML used by the Web, SOA, and application software. It is also the language most BPMN
tool vendors will use to interchange models. For that reason, in this book we will focus on the
XSD representation of the BPMN metamodel.

Figure 12-1. Definitions class diagram. Source: OMG

17 The XSD and XMI may be downloaded from http://www.omg.org/spec/BPMN/20100501.

Chapter 12. BPMN 2.0 Metamodel and Schema | 147

XSD Basics
A full explanation of the XSD language18 is beyond the scope of this book, but for those
unfamiliar with it, a few basics here will be helpful to understand the discussion of BPMN
model serialization.

An XML schema is itself an XML document. You can view or edit it as tagged text, but many
XML tools also provide a graphical view that is more helpful for understanding the schema
structure. Figure 12-2 illustrates, for example, a fragment of both the text and graphical
representations of the BPMN root definitions element in XML Spy19 from Altova, the tool I use.

Figure 12-2. Text and Graphical views of the BPMN schema in XML Spy

18 A good reference is Priscilla Walmsley, Definitive XML Schema, Prentice Hall PTR, 2002

19 http://www.altova.com/xmlspy.html

148| Chapter 12. BPMN 2.0 Metamodel and Schema

The XSD defines the element names and datatypes, their attributes and child elements. A
BPMN 2.0 model is, by definition, incorrect unless it is a valid instance of the schema. Most
XML editors contain a schema processor that lets you validate a process model against the
BPMN schema in a single mouse click. Some tools will allow you to save a BPMN model
even if it is not schema-valid, but some may not. And tools that manipulate XML, such as
XSLT editors, may require the input to be schema-valid in order to work at all. Thus creating
schema-valid BPMN is an absolute requirement for any implementer. Not all the rules of
BPMN are enforced by schema validation, but passing schema validation is an absolute
minimum requirement for BPMN model correctness.

Note in the text representation of Figure 12-2 that each tag name has two parts, a prefix
separated by a colon from the local name. The prefix is shorthand for the namespace, typically
specified as a URL. Usually all the namespaces used in the schema are declared using xmlns
attributes of the root xsd:schema element. The prefix xsd, for example, represents the
namespace http://w3.org/2001/XMLSchema, which is the namespace for the XSD language itself.
Sometimes you see the prefix xs declared for that namespace, or both xsd and xs in the same
schema document. It wouldn’t matter if the prefix were qwp; the thing that counts is the
declared namespace URL that corresponds to the prefix.

The targetNamespace attribute of the root xsd:schema element identifies the namespace
associated with this particular schema. Here, for example, the namespace
http://www.omg.org/spec/BPMN20100524/MODEL signifies the BPMN 2.0 namespace. All BPMN
2.0 models must reference this namespace.

Another thing to notice about Figure 12-2 is that certain elements in the graphical
representation, such as category or collaboration, appear to be missing in the text representation.
They are actually defined in other XSD files that are included or imported. The text view on the
left represents just the file BPMN20.xsd, but note that it includes another file, Semantic.xsd, and
imports a third one, BPMNDI.xsd. Include means the other XSD has the same targetNamespace
as BPMN20.xsd; import means it has a different one, in this case
http://www.omg.org/spec/BPMN20100524/DI. The graphical view on the right automatically
combines the original file with its included and imported elements, while the text view does
not.

The xsd:sequence element enclosing a list of child elements specifies the required order of those
elements in an instance document. The minOccurs attribute specifies whether the element is
required or not. In the XML Spy graphical view, optional elements (minOccurs=”0”) have a
dotted border, required elements a solid border. The maxOccurs attribute specifies whether
the element may be repeated. If an XML instance omits a required element or puts them in
the wrong order, it is a schema violation.

Attributes of an element may occur in any order. They may be either required or optional, but
may not be repeated. If an attribute has a defined default value, omission of the attribute
means exactly the same thing as presence of the attribute with a value equal to the default.

Chapter 12. BPMN 2.0 Metamodel and Schema | 149

Each element and attribute in the schema has a datatype, or type. The XSD language defines a
large number of basic types, and additional simple and complex types may be defined within
the schema itself. From the text view of Figure 12-2, note that the element definitions is
assigned to the type tDefinitions, defined just below it in the schema.

Finally, in the graphical view of Figure 12-2, note the dotted vertical arrow from category,
collaboration, dataStore, and others to rootElement. That signifies these elements are subtypes of
rootElement, which in XSD is called a substitutionGroup. Substitution groups are as close as
XSD comes to UML subclasses. In XSD, an element may have only one substitutionGroup,
whereas in UML an element may be a subclass of many different classes.

BPMN Schema Fundamentals

XSD Files
The BPMN 2.0 schema is distributed as a set of five XSD files: BPMN20.xsd, Semantic.xsd,
BPMNDI.xsd, DI.xsd, and DC.xsd. Implementers should store them locally in the same folder.
BPMN20.xsd is the top level. It includes Semantic.xsd and imports BPMNDI.xsd, which in turn
imports DI.xsd and DC.xsd.

By itself, BPMN20.xsd represents the Infrastructure package of the BPMN metamodel Core. It
contains just two elements, definitions and import. A single definitions element is always at the
root of any BPMN XML instance document. The import element allows a single BPMN model
to be composed of multiple BPMN XML documents (files), supporting reuse of independently
maintained global tasks and processes.

Semantic and Graphical Models
In the BPMN XSD, the graphical model – information concerning the graphical layout of
shapes, such as position, size, and connection points – is entirely separate from the semantic
model. Both semantic and graphical models are enclosed within a single definitions element.
The graphical model, called BPMNDI, specifies no semantic information at all; it says only
that shapes with a bounding box of some particular size exist at some location on a page. You
cannot tell from BPMNDI whether the shape is an activity or event, except by tracing its
bpmnElement attribute, a pointer to the id of an element in the semantic model. A valid BPMN
model may omit BPMNDI entirely, but you may not omit the semantic model. BPMNDI
without semantic model information is meaningless.

IDs and ID References
Most elements in the BPMN 2.0 XSD have an id attribute of type xsd:ID, a type defined by the
XSD language for use in attributes only. ID types have special requirements. Their values
must start with either a letter or underscore, and can contain only letters, digits, underscores,
hyphens, and periods. More important, their values must be unique within an XML instance,

150| Chapter 12. BPMN 2.0 Metamodel and Schema

regardless of the attribute’s name. In other words, there can at most one element in a BPMN
model with an id value of _12345.

This uniqueness is critical because relationships between model elements are maintained by
pointers to other elements via their id value. For example, a sequence flow’s sourceRef attribute
matches the id of the flow node connected to the tail of the sequence flow. Elements and
attributes with “Ref” in their names are typically of type IDREF, a pointer to an attribute of
type ID. An XML instance document will not pass schema validation if any IDREF elements
or attributes point to an id value that is missing in the document, or if duplicate id values exist
anywhere in the document.

Import, targetNamespace, and Remote ID References
Recall that a BPMN instance document may import other BPMN instance documents. This is
not the same as an XSD file importing another XSD file, but it works in a similar manner. One
of the documents represents the top level or root of the BPMN model, but all the documents
together constitute a single BPMN model. This import feature is the key to BPMN modularity
and reuse.

A reusable subprocess, for example, is defined as a top-level process in its own BPMN document.
Let’s call it Billing. The Billing process may be invoked as a reusable subprocess using a Call
Activity from another BPMN instance document. The BPMN document containing the Call
Activity must import the document defining the Billing process. This allows Billing, which is
called by multiple end-to-end processes, to be maintained independently of its various calling
process definitions. In a mature BPM environment, such modularity is the rule rather than
the exception, but few BPMN tool vendors have yet considered its implications for model
serialization.

When one BPMN document imports another, some “Ref” elements or attributes will point to
an id in another file. And since the imported file, say a called process, was defined without
knowledge of other BPMN documents that might someday import it, there is the possibility
that an id value is duplicated between the imported and importing documents. It is not clear
whether that would be a schema violation or not, since ID types must be unique only within
an instance document, but an ambiguity would definitely exist for any IDREF pointing to the
id: Which element does it point to?

Here is where the BPMN spec does something unusual. To avoid the potential problem of
pointers to duplicate ids, the BPMN XSD defines many “Ref” elements and attributes not as
IDREF types but QName types. In XSD, QName normally means a namespace prefix-
qualified name, but BPMN uses it for a namespace prefix-qualified id value. The namespace
here is the targetNamespace declared by the model’s definitions element.

This is very strange indeed. In the BPMN 2.0 XSD, targetNamespace is a required attribute of
the root element definitions. Normally in XML a targetNamespace is defined for a schema, but
here we are talking about a targetNamespace for an instance document, a particular BPMN
model. It’s not the same thing at all. Its only purpose here is to support id references to

Chapter 12. BPMN 2.0 Metamodel and Schema | 151

elements in imported documents, using the targetNamespace prefix to unambiguously identify
the referenced element. Unlike with IDREF, a schema processor cannot validate the presence
of the id value referenced by QName.

Here is an example. The sourceRef attribute of a message flow is possibly a reference to an
element in an imported BPMN file, so it is defined in the XSD as a QName. Let’s say the
source of the message flow is a task in the imported Billing model with id value Task001, and
the Billing model targetNamespace is mapped to the prefix billing. In that case, the sourceRef
value should not be simply Task001 but billing:Task001. This resolves any possible ambiguity
between Task001 in Billing and Task001 in the calling process model.

In a model where there is no import or where the importing and imported documents have
the same targetNamespace, it is perfectly acceptable to omit the prefix on QName references,
and this is the most common situation.

Most tool vendors that support BPMN 2.0 export today populate the targetNamespace with a
fixed value for all BPMN models, something that identifies the vendor or tool, not the
particular model. But that could defeat its intended purpose. The spec intends that tool vendors
populate targetNamespace with a value that uniquely identifies the particular BPMN model.

Using a fixed value for targetNamespace is OK if the tool guarantees uniqueness of id values
globally, across all documents, not just within an instance document. Tools that use hashing
or similar techniques to generate globally unique IDs can get away with a fixed value for the
targetNamespace. Those are tools where the id value is some long, seemingly random string
of characters. But tools that use simple ids like Task001 must define unique targetNamespace
values for each BPMN document if they want to avoid ambiguous remote references. (Today,
most vendors avoid the problem because they do not yet support import. But that is a
temporary artifact of an immature BPMN 2.0 market. Ultimately, any serious BPMN tool
must support import and remote id references, because they are required for task and process
reuse.)

153

CHAPTER 13

13. Process Modeling Conformance
Subclasses

Here is what the BPMN 2.0 spec says about conformance:20

“Software can claim compliance or conformance with BPMN 2.0 if and only if the software
fully matches the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points can claim only that the
software was based on this specification, but cannot claim compliance or conformance with
this specification. The specification defines four types of conformance namely Process
Modeling Conformance, Process Execution Conformance, BPEL Process Execution
Conformance, and Choreography Modeling Conformance….

The implementations claiming Process Modeling Conformance MUST support the
following BPMN packages:

• The BPMN core elements, which include those defined in the Infrastructure,
Foundation, Common, and Service packages.

• Process diagrams, which include the elements defined in the Process, Activities,
Data, and Human Interaction packages.

• Collaboration diagrams, which include Pools and Message Flow.

• Conversation diagrams, which include Pools, Conversations, and Conversation
Links.”

As an alternative to full Process Modeling Conformance, there are three Process Modeling
Conformance subclasses defined:

• Descriptive
• Analytic
• Common Executable

20 http://www.omg.org/spec/BPMN/2.0/PDF, page 1.

154| Chapter 13. Process Modeling Conformance Subclasses

Without the addition of these Process Modeling Conformance subclasses in the Finalization
phase of BPMN 2.0, it is doubtful we would ever see software that could claim compliance or
conformance under the terms stated. Some of the packages referenced for full conformance
contain elements only used in executable models, and all of them contain many obscure and
rarely used elements. I cannot imagine a tool vendor supporting every one of them.

But common sense prevailed in the end. The Descriptive and Analytic conformance
subclasses are explicitly for non-executable models, and include only the information visible in the
diagram itself. Sound familiar? It should, because these subclasses were based on BPMN
Method and Style Level 1 and Level 2 palettes!

Descriptive Subclass
The Descriptive subclass corresponds to the Level 1 palette. The elements and attributes in
the table below are referenced by their XML names in the XSD. Some “attributes” in Figure
13-1 are actually elements in the XSD.

Element Attributes
participant (pool) id, name, processRef
laneSet id, lane with name, childLaneSet, flowElementRef
sequenceFlow id, name, sourceRef, targetRef
messageFlow id, name, sourceRef, targetRef
exclusiveGateway id, name
parallelGateway id, name
task (None) id, name
userTask id, name
serviceTask id, name
subProcess id, name, flowElement
callActivity id, name, calledElement
dataObject id, name
textAnnotation id, text
association id, name, sourceRef, targetRef, associationDirection
dataAssociation id, name, sourceRef, targetRef
dataStoreReference id, name, dataStoreRef
startEvent (None) id, name
endEvent (None) id, name
messageStartEvent id, name, messageEventDefinition
messageEndEvent id, name, messageEventDefinition
timerStartEvent id, name, timerEventDefinition
terminateEndEvent id, name, terminateEventDefinition
documentation text
Group id, categoryValueRef
Figure 13-1. Descriptive Subclass elements and attributes

Note that the elements in the left column match up exactly with the Level 1 palette from the
Chapter 4 of this book. Of more significance is the right column, which specifies the details of
each element that a tool must support in order to conform to the Descriptive subclass. It is
just the name (the label in the diagram), the id and id references, and a few elements that
determine the icon or marker, such as messageEventDefinition – in other words, just the
information that is visible in the diagram!

Chapter 13. Process Modeling Conformance Subclasses | 155

Figure 13-2. User task schema

That is just a tiny fraction of the elements and
attributes defined in the XSD. Figure 13-2 is a
condensed view of the schema for a single
element, userTask. It is condensed because each
of the boxes with the [+] marker – and this is
most of them – can be further expanded to reveal
additional child elements and attributes.

Now you see why the Descriptive and Analytic
subclasses are so important to interoperability
between tools. Full conformance, according to
the spec, would demand a tool must “support”
all of these elements, that is, be able to export
and import them and understand their meaning.
That is simply not realistic. Conformance with
the Descriptive subclass, however, demands a
tool support only documentation and the
attributes id and name. Actually there are a
couple more, related to data flow connections,
but it’s still a tiny fraction of the full schema.

Analytic Subclass
The Analytic subclass corresponds to the Level 2
palette. Like the Descriptive subclass, Analytic
also just reflects information visible in the
diagram, not the execution-related details
underneath each shape and symbol. The
subclass includes everything in the Descriptive
subclass plus the elements and attributes shown
in Figure 13-3.

156| Chapter 13. Process Modeling Conformance Subclasses

Element Attribute
sequenceFlow conditionExpression, default
sendTask id, name
receiveTask id, name
Looping activity standardLoopCharacteristics
Multi-instance activity multiinstanceLoopCharacteristics
exclusiveGateway Default
inclusiveGateway id, name, default
eventBasedGateway id, name, eventGatewayType
Link event pair id, name, linkEventDefinition/@name
Signal start/end event id, name, signalEventDefinition
Signal throw/catch
intermediate event

id, name, signalEventDefinition

Signal boundary event id, name, signalEventDefinition, attachedToRef, cancelActivity
Message throw/catch
intermediate event

id, name, messageEventDefinition

Message boundary event id, name, messageEventDefinition, attachedToRef, cancelActivity
Timer catching event id, name, timerEventDefinition
Timer boundary event id, name, timerEventDefinition, attachedToRef, cancelActivity
Error boundary event id, name, errorEventDefinition, attachedToRef
Error end event id, name, errorEventDefinition
Escalation throw
intermediate event

id, name, escalationEventDefinition

Escalation end event id, name, escalationEventDefinition
Escalation boundary event id, name, escalationEventDefinition, attachedToRef, cancelActivity (false only)
Conditional start event id, name, conditionalEventDefinition
Conditional catch
intermediate event

id, name, conditionalEventDefinition

Conditional boundary event id, name, conditionalEventDefinition, attachedToRef, cancelActivity
message id, name
Message flow messageRef

Figure 13-3. Analytic Subclass elements and attributes

Common Executable Subclass
The spec defines a third process modeling conformance subclass called Common Executable.
The palette is in between Descriptive and Analytic, but it contains additional attributes related
to executable details. We will discuss it more fully in Chapter 19.

157

CHAPTER 14

14. BPMN Serialization Basics

definitions
The top-level element in any BPMN model instance document is definitions. In this book I use
the terms BPMN document and BPMN file interchangeably. Because a BPMN document can
import another one, a single BPMN model may be composed of multiple BPMN documents. In
that case, one of the documents is the top level of the hierarchy; the import references may not
be circular. Each document must be enclosed in a definitions element.

 <xsd:element name="definitions" type="tDefinitions"/>
 <xsd:complexType name="tDefinitions">
 <xsd:sequence>
 <xsd:element ref="import" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="extension" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="rootElement" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="bpmndi:BPMNDiagram" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="relationship" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID" use="optional"/>
 <xsd:attribute name="name" type="xsd:string"/>
 <xsd:attribute name="targetNamespace" type="xsd:anyURI" use="required"/>
 <xsd:attribute name="expressionLanguage" type="xsd:anyURI" use="optional"
default="http://www.w3.org/1999/XPath"/>
 <xsd:attribute name="typeLanguage" type="xsd:anyURI" use="optional"
default="http://www.w3.org/2001/XMLSchema"/>
 <xsd:attribute name="exporter" type="xsd:string"/>
 <xsd:attribute name="exporterVersion" type="xsd:string"/>
 <xsd:anyAttribute namespace="##other" processContents="lax"/>
 </xsd:complexType>

Figure 14-1. definitions schema

Figure 14-1 shows the schema for definitions. The attributes id and name are optional and
rarely used. The latter would represent the name of the BPMN model.

158| Chapter 14. BPMN Serialization Basics

targetNamespace
The attribute targetNamespace, discussed earlier, is required. The datatype is anyURI, which
usually is a URL. No file or web page is required to exist at the URL; it simply identifies a
namespace. Most tools today use the same URL for all BPMN models, something that
identifies the tool or tool vendor. However, as discussed earlier, this only works when
globally unique id values are assigned to model elements, since there is the risk of ambiguous
remote references due to duplicate ids in imported BPMN documents. In general, it is better
to generate a model-specific targetNamespace value, perhaps related to the model name.

expressionLanguage and typeLanguage
The attributes expressionLanguage and typeLanguage are optional. The first identifies the
language used in data expressions, such as gateway conditions. If the attribute is omitted, the
default XPath 1.0 (http://www.w3.org/1999/XPath) is implied. The global expressionLanguage
value provided here may be overridden on individual expression elements. typeLanguage
identifies the language used to specify datatypes of model elements. The default value is the
XSD language. The global value may be overridden on individual data elements.

These attributes are not part of the Analytic class, which assumes the defaults.

exporter and exporterVersion
String attributes exporter and exporterVersion identify the tool and tool version used to serialize
the model. The attributes are optional in the XSD but are recommended if the export is
intended to be interoperable with other tools.

Global Namespace Declarations
Since definitions is the root element in the BPMN document, it should provide namespace
declarations for all of the namespaces used in the document. Namespaces may be declared
locally in elements where they are used, but it is better in general to declare them in
definitions. Namespace declarations are attributes of the form xmlns[:prefix]=”[namespace
URI]”. The default namespace – implied for elements with no prefix – is usually set to the
BPMN 2.0 namespace, i.e., xmlns=”http://www.omg.org/spec/BPMN/20100524/MODEL”. In
addition, the XSD and BPMNDI namespaces must be declared, as well as those of imported
documents.

schemaLocation
The xsi:schemaLocation attribute is used by XML tools to validate your model against the
BPMN 2.0 XSD. The value of this attribute is constructed by concatenating the namespace
with a filepath or URL pointing to the file BPMN20.xsd, separated by a space. The attribute’s
prefix xsi: indicates the XML Schema Instance namespace, which is used for schema locations.
(If the schemaLocation is provided, the XSI namespace also needs to be declared, as described
above.)

Chapter 14. BPMN Serialization Basics | 159

For example,
xsi:schemaLocation=”http://www.omg.org/spec/BPMN/20100524/MODEL schemas/BPMN20.xsd “
says that the schema for the BPMN 2.0 namespace is located at the path schemas/BPMN20.xsd
(relative to the BPMN file). Instead of a local file path, you may point to the official schema
location on the web, http://www.omg.org/spec/BPMN/20100501/BPMN20.xsd.

import
Element import identifies another XML document imported into the model. The element is
optional and unbounded, meaning any number of import elements are allowed. Although
very few tools do it today, the spec says support of import is required for conformance. BPMN
specifically identifies three types of imports that MUST be supported – BPMN documents,
XSD files, and WSDL files – but allows others in addition. Each import is defined by three
required attributes:

• importType. The value (an absolute URI) MUST be set to
http://www.w3.org/2001/XMLSchema when importing XML Schema 1.0 documents, to
http://www.w3.org/TR/wsdl20/ when importing WSDL 2.0 documents, and
http://www.omg.org/spec/BPMN/20100524/MODEL when importing BPMN 2.0
documents. Other types of documents MAY be supported.

• location. The value (string) is the file location or URL of the imported document.

• namespace. The value (an absolute URI) must match the targetNamespace of the
imported file.

extension
Child element extension (optional, unbounded), according to the spec, “allows BPMN
adopters to attach additional attributes and elements to standard and existing BPMN
elements.” In addition to a child documentation element, each extension includes two
attributes:

• definition. A QName reference to an element in an imported XSD.

• mustUnderstand. A Boolean.

The extension element in definitions binds the imported data definition globally to the model. I
have never seen this construct used. In practice, proprietary tool vendor extensions most
often use extensionElements within specific model elements.

rootElement
The rootElement children of definitions represent reusable elements of the BPMN semantic
model. These include the basic model types process, collaboration, and choreography, plus any
other globally reusable elements, such as global tasks, event definitions, data store, and
message. In the XSD, root element is designated as abstract – meaning you should never see
an element named rootElement in a BPMN instance. Concrete root elements that designate

160| Chapter 14. BPMN Serialization Basics

rootElement as its substitutionGroup automatically inherit the properties of the root element
class in the metamodel. For example, only the root elements of a BPMN document may be
referenced by another BPMN document that imports the first one. For example, a call
activity’s calledElement may point to an imported process (root element) but not to an imported
subProcess (not a root element). There is no prescribed order of root elements. Specific root
elements are defined in Semantic.xsd.

BPMNDiagram
The bpmndi:BPMNDiagram children of definitions comprise the BPMN graphical model,
specifying the location, size, and page organization of the shapes in the diagram. Each
BPMNDiagram element represents a different page or diagram in the model. The element is
prefixed because it is in a separate namespace. We will discuss the graphical model in more
detail in Chapter 17.

relationship
Child element relationship provides another BPMN extension mechanism specifying user-
defined relationships between source and target model elements, such as between as-is and to-
be process models. I have never seen this used in practice.

documentation and extensionElements
Most BPMN model elements contain child elements documentation and extensionElements.

• documentation is part of the Descriptive and Analytic subclasses. It has no graphical
representation in the diagram. It allows embedding any documentation content in
the process model XML.

• extensionElements is not part of the Analytic subclass, but is the normal way BPMN
tools insert proprietary information used by the tool itself, including information
beyond the scope of the BPMN standard, such as simulation parameters. Children of
extensionElements should be prefixed with the namespace of the tool or tool vendor.

collaboration
What was called in BPMN 1.2 a Business Process Diagram is in BPMN 2.0 called a collaboration
model. In the diagram it contains one or more processes interacting via message flows. In the
semantic model, the root element collaboration merely defines the participants, message flows,
and artifacts. Each process referenced by a participant is a separate root element. (Technically,
collaboration also contains a number of elements related to Choreography and Conversation
models, but those are outside the scope of this book.)

Chapter 14. BPMN Serialization Basics | 161

participant
A pool in the diagram is a shape that references a participant in the semantic model. In the
Method and Style section of this book I said that a pool is primarily a container for a process,
as it was officially in BPMN 1.2, and only secondarily a partner role or entity involved in a
business-to-business interaction, which is how the term participant is described in the BPMN
2.0 spec narrative. By equating pool to participant, the BPMN 2.0 spec muddies the waters
but effectively changes very little. The reason is simple: A participant element may either
reference no process, in which case we call it a black-box pool, or a single process. Within any
BPMN model, a single participant may not be associated with more than one process. Thus,
in reality, except for black-box pools, the terms participant and process signify the same thing.

There is also the issue of compatibility with existing BPMN models. In BPMN 1.2, it was
common to draw a pool enclosing a single BPMN process, even when no other pool or
message flows was drawn. If a pool means a role or business entity engaged in a
collaboration, would a diagram with a single pool even be legal in BPMN 2.0? In fact, in early
drafts of BPMN 2.0, it was not; the XSD required a minimum of two participants. Fortunately
that requirement was later dropped.

The participant element has three attributes in the Analytic subclass:

• id. You need to specify this if you want to draw a pool shape in the diagram. It is the
unique value pointed to by the bpmnElement attribute of a pool shape in the graphical
model.

• name. This is the label displayed in the pool shape. In the Method and Style section
of this book I advise labeling a process pool with the name of the process. In the
BPMN XML, that value becomes the participant name. In the BPMN 2.0 graphical
model, there is no shape associated with the semantic element process. A pool,
meaning a participant, is the closest thing we have. For that reason, I recommend
applying the pool label value to both the participant and process name attributes.

• processRef. This is a QName pointer to a process element. It is QName because the
process and collaboration elements could be in different BPMN files. Omission of this
attribute indicates a black-box pool, i.e., no process. And if present, there can be at
most one of them.

Child element participantMultiplicity, if present, is visualized through the multi-instance
participant marker discussed in Chapter 8.

messageFlow
The messageFlow semantic element has five important attributes:

• id. Optional if no graphical model is provided, but required as bpmnElement
reference for the graphical connector.

• name. This is the connector label, identifying the message.

162| Chapter 14. BPMN Serialization Basics

• sourceRef and targetRef. These are required QName pointers to the semantic elements
at the message flow tail and head, respectively. They must be valid sources and
targets for messages, as discussed in Chapter 7.

• messageRef. I tend not to use it, but it is included in the Analytic subclass. If you
show the Message shape on a message flow, messageRef is a QName pointer to a root
message element that specifies the shape label and (in executable models) the technical
details of the message.

The location and bendpoints of the message flow connector are defined in the graphical
model, not in the semantic messageFlow element.

process
The root element process describes a BPMN process, that is, an orchestration, as discussed in
detail in Chapter Chapter 2. Attributes of this element include:

• id. Required as target for participant attribute processRef, indicating a white-box pool.

• name. Actually, the process name appears on no shape label, unless you follow the
Method and Style convention of making the participant and process names identical.
A good reason to follow this convention is to support process reuse via call activity.
Although the call activity’s calledElement reference in the XML is the process id, in a
BPMN tool the modeler is most likely to browse and select the called process by
name.

• processType (not in Analytic subclass). Optional enumerated string attribute
processType specifies whether a process is Public or Private. A Public process, called an
abstract process in BPMN 1.2, contains only nodes that interact with outside entities
via messages. A Private process, in contrast, contains the complete activity flow logic.
None, the default value of processType, signifies undefined.

• isExecutable (not in Analytic subclass). Optional Boolean attribute for Private
processes. If this attribute is omitted, the process is implicitly non-executable. Certain
rules in the spec narrative apply only to executable processes.

Example: Simple Process Model
The simple model depicted in Figure 14-2 is serialized in Figure 14-3.

Figure 14-2. A simple process model

Chapter 14. BPMN Serialization Basics | 163

<definitions targetNamespace="http://www.itp-commerce.com"
xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
xmlns:itp="http://www.itp-commerce.com/BPMN2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL schemas/BPMN20.xsd"
exporter="Process Modeler 5 for Microsoft Visio" exporterVersion="5.2742.13663 SR6"
itp:name="My Diagram" itp:version="1.0" itp:author="bruce" itp:creationDate="8/3/2011 2:42:47 PM"
itp:modificationDate="8/3/2011 3:07:20 PM”
id="_4adb855a-76f3-4539-8a1d-60102f3b12e7">

 <process id="_4188bfa1-cb2f-4f72-a84f-9f4f70b41a6b" name="My Process" processType="None">
 <startEvent id="_3f808752-02dd-42d5-b4aa-2015031c7cc7"/>
 <task id="_0532502d-31db-4fa5-920b-65c173652055" name="My task"/>
<endEvent id="_7986530a-fb47-4918-83fb-ad6c4f7d7656" name="Process complete"/>
 <sequenceFlow id="_6e913629-e553-47bf-875a-ce53cc167bdc" sourceRef="_3f808752-02dd-42d5-b4aa-

2015031c7cc7" targetRef="_0532502d-31db-4fa5-920b-65c173652055"/>
 <sequenceFlow id="_bfcb1cad-0c47-40df-9bd3-0e744bfe5bd2" sourceRef="_0532502d-31db-4fa5-920b-

65c173652055" targetRef="_7986530a-fb47-4918-83fb-ad6c4f7d7656"/>
 </process>

</definitions>

Figure 14-3. Serialization of a simple process model

Several things are worth noting about the serialization, generated by Process Modeler for
Visio from itp commerce ltd.

• ids for all elements are tool-generated globally unique values.

• The targetNamespace declaration is not model-specific but the same for all models
serialized by this tool. That is acceptable since the tool generates globally unique
element ids.

• The default (unprefixed) namespace is declared to be the BPMN 2.0 namespace,
http://www.omg.org/spec/BPMN/20100524/MODEL. Some tools use a prefix for this
namespace.

• Two other namespaces are declared in the definitions element, the prefix xsi to
reference the schemaLocation attribute, and the prefix itp to reference tool vendor
proprietary elements and attributes.

• The xsi:schemaLocation attribute indicates that this instance document is to be
validated against the BPMN 2.0 schema found at the relative file location
schemas/BPMN20.xsd.

• The exporter and exporterVersion identify the tool and version used to create the
serialization.

• Vendor-proprietary attributes in with the itp prefix are used to hold non-standard
information about the model, such as the model name, version, author, creation date
and modification date.

• The process element has a processType value of None. Since that is the default, this
attribute could have been omitted.

164| Chapter 14. BPMN Serialization Basics

• The name attribute of the task and endEvent elements match their labels in the
diagram.

• The sequenceFlow sourceRef and targetRef values match the id values of the source
and target nodes.

Example: Simple Collaboration Model
Figure 14-4 illustrates a simple collaboration model, serialized in Figure 14-5.

Figure 14-4. Simple collaboration model

<definitions targetNamespace="http://www.itp-commerce.com"
xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
xmlns:itp="http://www.itp-commerce.com/BPMN2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL schemas/BPMN20.xsd"
exporter="Process Modeler 5 for Microsoft Visio" exporterVersion="5.2742.13663 SR6"
itp:name="My Diagram" itp:version="1.0" itp:author="bruce" itp:creationDate="8/3/2011 3:41:57 PM"
 itp:modificationDate="8/3/2011 3:47:47 PM" itp:createdWithVersion="5.2742.13663 SR6"
 id="_1f2848e9-2fd8-49ab-96ae-1411838c1e70">
<process id="_98663b88-a518-493a-96f4-e1b2b7c3aace" name="Main Process" processType="None">

<startEvent id="_d028c241-0061-4c86-99a4-b8e9ab4e3a54" name="Receive service request">
<messageEventDefinition />

</startEvent>
<task id="_94aa77d8-a54d-4000-aaf0-b00cfbbb652d" name="Perform service">
<endEvent id="_94f1e4b4-d44e-4fc8-8d02-fd9320c4ace0" name="Service complete">

<messageEventDefinition />
</endEvent>
<sequenceFlow id="_006c73de-346f-4111-8824-e687db8210c6" sourceRef="_94aa77d8-a54d-4000-aaf0-

b00cfbbb652d " targetRef="_94f1e4b4-d44e-4fc8-8d02-fd9320c4ace0"/>
 <sequenceFlow id="_3d9765f0-4006-4998-a5ec-438ffa29aa3a" sourceRef="_d028c241-0061-4c86-99a4-

b8e9ab4e3a54" targetRef="_94aa77d8-a54d-4000-aaf0-b00cfbbb652d "/>
 </process>

<collaboration id="_fd9acbee-264b-44dc-bae0-d3d33e74f751">
<participant id="_8eea715d-f551-4487-9a64-6226dea487cd" name="Customer"/>
<participant id="p_98663b88-a518-493a-96f4-e1b2b7c3aace " name="Main Process" processRef=”_98663b88-

a518-493a-96f4-e1b2b7c3aace“/>
<messageFlow id="_e817a1b2-f0dd-4a49-b33d-25da322872ae" name="Service request" sourceRef="_8eea715d-

f551-4487-9a64-6226dea487cd" targetRef="_d028c241-0061-4c86-99a4-b8e9ab4e3a54"/>

Chapter 14. BPMN Serialization Basics | 165

<messageFlow id="_566cf079-8ac8-4ca4-9b01-a0dac679962d" name="Confirmation" sourceRef="_94f1e4b4-
d44e-4fc8-8d02-fd9320c4ace0" targetRef="_8eea715d-f551-4487-9a64-6226dea487cd"/>

</collaboration>
</definitions>

Figure 14-5. Serialization of a simple collaboration model

Noteworthy differences from Figure 14-3 include:

• In addition to the process element there is a collaboration element. The process is not
contained in the collaboration, but is another root element.

• The collaboration identifies two participants. One, named Customer, has no processRef
attribute, indicating it is a black-box pool. The participant name is taken from the pool
label. The second participant has no pool shape available to name it, so by default it
takes the name of the process. In this case, since I did not assign a process name, the
tool gave it the default name Main Process. The participant takes the same name. The
processRef of the participant points to the process id.

• The empty child element messageEventDefinition identifies the start and end events as
Message events.

• The messageFlow sourceRef and targetRef values point to a Message event at one end
and the participant Customer at the other end.

Example: Simple Import and Call Activity
Figure 14-6 illustrates a process that calls My Process as a reusable subprocess using a call
activity. The called process is the same as the one depicted in Figure 14-2 and serialized in
Figure 14-3. In order to reference My Process, the calling process must first import the BPMN
file defining the called process.

Figure 14-6. Simple process with call activity

<definitions targetNamespace="http://www.itp-commerce.com"
xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
xmlns:itp="http://www.itp-commerce.com/BPMN2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=http://www.omg.org/spec/BPMN/20100524/MODEL schemas/BPMN20.xsd
 exporter="Process Modeler 5 for Microsoft Visio" exporterVersion="5.2742.13663 SR6"
itp:name="My Diagram" itp:version="1.0" itp:author="bruce" itp:creationDate="8/4/2011 11:02:21 AM"
itp:modificationDate="8/4/2011 11:07:18 AM" itp:createdWithVersion="5.2742.13663 SR6"
itp:conformanceSubClass="Full"
 id="_c66bdce7-22fb-4b94-ac58-c28d0fc76c16">
<import namespace="http://www.itp-commerce.com" location="C:\Users\Bruce\Documents\book\draft\14-

2.bpmn" importType="http://www.omg.org/spec/BPMN/20100524/MODEL"/>
<process id="_c7781df5-3926-40fc-81fd-1bb409bc5c91" name="Main Process" processType="None">

<startEvent id="_708b45b8-bd58-4a33-b629-ee96e4a785f0"/>
<callActivity id="_0c280062-dd03-4f62-ae45-db61a2b5cb93" name="Call ‘My Process’"

166| Chapter 14. BPMN Serialization Basics

calledElement="_4188bfa1-cb2f-4f72-a84f-9f4f70b41a6b" itp:isCollapsed="true"/>
<sequenceFlow id="_8843eef9-faeb-4bbe-aba0-214831acc38b" sourceRef="_708b45b8-bd58-4a33-b629-

ee96e4a785f0" targetRef="_0c280062-dd03-4f62-ae45-db61a2b5cb93"/>
<endEvent id="_800e79a2-ed8e-4f69-8fab-c4cc4d38b53c"/>
<sequenceFlow id="_33364eeb-f363-40f5-b543-8335095abca0" sourceRef="_0c280062-dd03-4f62-ae45-

db61a2b5cb93" targetRef="_800e79a2-ed8e-4f69-8fab-c4cc4d38b53c"/>
</process>

</definitions>

Figure 14-7. Serialization of import and call activity

There are several things to note about Figure 14-7:

• The imported file is not contained in the serialization. Import does not copy the
contents of the imported process, but simply points to it.

• The import attribute namespace is the targetNamespace of the imported BPMN file.
Recall that the itp commerce tool uses a fixed targetNamespace for all its models,
which it can do because it uses globally unique element ids.

• The import attribute location is the relative filepath to the imported .bpmn (XML) file.

• The import attribute importType identifies the import as a BPMN 2.0 file.

• The callActivity attribute calledElement matches the id of the process element of the
imported file, which you can verify from Figure 14-3. If the imported file had had a
different targetNamespace, the calledElement value would be prefixed.

Now that we have seen the basic XML structure of the BPMN semantic model, the next
chapter explains how to serialize the flow elements of a process.

167

CHAPTER 15

15. Serializing Process Elements

flowElement and flowNode
flowElement, an optional unbounded child of process, represents the abstract class (called
substitutionGroup in XSD) of elements that belong to a process. These include sequenceFlow,
dataObject, dataObjectReference, dataStoreReference, and the flowNode elements, meaning those
that can connect to sequence flows, namely activity, gateway, and event.

All members of the flowElement class have an optional name attribute that appears as the label
of the corresponding shape, and three rarely-used child elements: auditing, monitoring, and
categoryValueRef. The first two of those, which are not in the Analytic subclass, are undefined
placeholders for some future standard; it’s unclear why they are part of the specification at all.
categoryValueRef is a QName pointer to a categoryValue element, a child of a category root
element. In the Analytic subclass its only purpose is to associate a group shape with elements
of a particular category value. I have never seen it used.

The flowNode class adds two more optional unbounded child elements, incoming and outgoing.
These are QName pointers to incoming and outgoing sequence flows, respectively. In that
sense they are completely redundant to the sourceRef and targetRef attributes of the sequence
flows themselves, which are required in the XSD. I believe it is incorrect to make these
QName, as a sequence flow may not connect to a flowNode in another BPMN document, and
the sourceRef and targetRef of a sequence flow are local IDREFs not QName. Thus, since they
have no apparent purpose, I recommend omitting incoming and outgoing.

Each distinct type of activity, gateway, and event is represented by a separate XSD element in
the semantic model. The elements activity, gateway, and event themselves are abstract classes,
not used directly in the XML but from which the specific subtypes inherit various attributes
and child elements. In the BPMN XML you must use the concrete subtype elements like
userTask or exclusiveGateway.

activity
The activity abstract class adds several attributes and child elements to flowNode:

168| Chapter 15. Serializing Process Elements

• Optional IDREF attribute default identifies a default sequence flow outgoing from the
activity. It is in the Analytic subclass.

• Optional Boolean attribute isForCompensation (default value false) identifies a
compensating activity. It is not in the Analytic subclass.

• Optional integer attributes startQuantity and completionQuantity, both default value 1,
are used only in executable processes. They are not in the Analytic subclass.

• Optional child elements property, ioSpecification, dataInputAssociation, and
dataOutputAssociation are related to data flow. The last three are effectively part of
the Descriptive and Analytic subclasses, as they are needed to serialize data flow in
Level 1 or Level 2 diagrams. We will discuss data flow modeling in more detail in
Chapter 16.

• Optional child element resourceRole and its subtypes humanPerformer and
potentialOwner are related to human task assignment in executable processes,
discussed in more detail in Chapter 22. They are not in the Analytic subclass.

• Optional child element multiInstanceLoopCharacteristics signifies a multi-instance
activity. Boolean attribute isSequential indicates whether the bars in the marker
should be horizontal (sequential) or vertical (parallel). The default value is false, so if
omitted the MI behavior is parallel. This is the only detail of
multiInstanceLoopCharacteristics in the Analytic subclass; there are many more
elements and attributes used to describe complex MI behaviors in executable BPMN.

• Optional child element standardLoopCharacteristics signifies a loop activity, part of the
Analytic subclass. The following details are not part of the subclass. Optional
Boolean attribute testBefore, default value false, determines whether the loop condition
is evaluated before or after running the activity. Optional integer attribute
loopMaximum lets you put an upper limit on the iterations. Optional child
loopCondition is a conditional expression used in executable processes.

The activity element is an abstract class and should not be used directly. Instead you must use
a concrete element representing a particular task or subprocess type. The following activity
type elements are included in the Analytic subclass:

• task (called Abstract task in the spec narrative)

• userTask

• serviceTask

• sendTask

• receiveTask

• callActivity

Chapter 15. Serializing Process Elements | 169

• subProcess (meaning “embedded” subprocess other than a transaction or ad-hoc
subprocess)

The following activity elements are outside the Analytic subclass:

• scriptTask

• businessRuleTask

• manualTask

• adHocSubProcess

• transaction

Reusable task definitions, called global tasks, are not defined within a process but are root
(callable) elements like process itself. The XSD defines the following global task types:

• globalTask (Abstract task)

• globalUserTask

• globalScriptTask

• globalManualTask

• globalBusinessRuleTask

serviceTask, sendTask, and receiveTask are implicitly reusable as-is, so they do not have
corresponding globalTask types. Although the spec does not say so, we will assume that if a
task type is in the Descriptive or Analytic subclass, its corresponding global type is a member
of that subclass as well.

Other than those like documentation and loop/multi-instance characteristics, inherited from
the base activity class, attributes and child elements of specific activity types are outside the
Analytic subclass. They are there to support executable processes and discussed further in
Part V:

• userTask has attribute implementation, with allowed values ##unspecified (the default),
##WebService, or a URL to indicate a defined implementation such as WS-HumanTask
(http://docs.oasis-open.org/ns/bpel4people/ws-humantask/protocol/200803). It also has
optional child rendering that can be used to specify user interface details under
extensionElements.

• serviceTask has attribute implementation with the same allowed values as userTask,
except ##WebService is the default. Attribute operationRef is a remote (QName)
reference to a web service operation, typically from an imported WSDL file.

• sendTask has the same implementation and operationRef attributes and defaults as
serviceTask. In addition, attribute messageRef is a QName pointer to a message element,
typically in an imported XSD or WSDL.

170| Chapter 15. Serializing Process Elements

• receiveTask has the same attributes as sendTask, with the addition of optional Boolean
attribute instantiate, default value false. Immediately following a None start event, a
receiveTask with an instantiate value of true means the same thing as a Message start
event, i.e., receipt of the message instantiates the process. Since the value of
instantiate is not visible in the diagram, this construction is visually ambiguous, so
Method and Style deprecates its use in favor of Message start event.

• callActivity has optional QName attribute calledElement, a pointer to either a process or
global task. The calledElement is typically defined in an imported BPMN file, but it
could be in the same file as the callActivity.

subProcess
subProcess has two differences from standard activity. Optional Boolean attribute
triggeredByEvent, if true, signifies an event subprocess. The default value false signifies a regular
subprocess. Event subprocess is not in the Analytic subclass.

In the XML, a subProcess element encloses all of the flowElements in its child process level. A
subProcess element in the child level encloses its children as well, and this nesting can extend
without limit. Just to restate the point, process level containment is not modeled by pointers
to element ids; the elements themselves are enclosed within the subProcess tags. Since all the
elements in a process level are physically contained within its parent subProcess (or, at the top
level, process) element, BPMN is inherently hierarchical.

It is important to note that there is nothing in the semantic subProcess element that indicates
whether the child-level flow is drawn inline, inside an expanded subProcess shape on the same
page (diagram) as the parent level, or hierarchically, in a separate diagram linked to a collapsed
subProcess shape in the parent level. Notions of expanded vs. collapsed subprocesses or inline
vs. hierarchical modeling styles are purely aspects of the graphical model. The serialization of
the subProcess element in the semantic model is exactly the same no matter how it is drawn in
the diagram! In BPMN 1.2, some people (including tool vendors) mistakenly thought
embedded and expanded subprocesses were the same thing, or at least went hand in hand.
The BPMN 2.0 schema should finally put this idea to rest.

Chapter 15. Serializing Process Elements | 171

Figure 15-1. Process model with two process levels

Figure 15-1 illustrates a process model with two process levels. The serialization in Figure
15-2 shows the nesting of the child-level elements underneath the subProcess element.

<definitions targetNamespace="http://www.itp-commerce.com"
xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL" xmlns:itp="http://www.itp-commerce.com/BPMN2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL schemas/BPMN20.xsd" exporter="Process
Modeler 5 for Microsoft Visio" exporterVersion="5.2742.13663 SR6" itp:name="My Diagram" itp:version="1.0"
itp:author="bruce" itp:creationDate="8/4/2011 12:17:24 PM" itp:modificationDate="8/4/2011 1:57:52 PM"
itp:createdWithVersion="5.2742.13663 SR6" itp:conformanceSubClass="Full" id="_1ae6a483-77a8-4eed-be89-
f1e343bf9bf6">
 <process id="_2fc66c01-1839-44ed-af36-5e67811891e1" name="Main Process" processType="None">
 <startEvent id="_3fbcb343-3a7c-4023-805f-d12f747fdeeb"/>
 <subProcess id="_e7df3b40-d626-4920-bc92-d006dad77502" name="A" itp:isCollapsed="false">
 <startEvent id="_89aa9447-1739-46d4-87eb-c7b459e6f06e"/>
 <task id="_3bc7dc56-15b0-4581-87d8-832427474fcb" name="B"/>
 <task id="_ca47d153-84f6-4f12-98a2-6bbc3269e3ae" name="C"/>
 <exclusiveGateway id="_b7941c03-aaa0-4afc-9c32-4d689aa440a8" name="OK?"
gatewayDirection="Diverging"/>
 <endEvent id="_efd84c60-db46-404d-822a-b08451799db0" name="OK"/>
 <endEvent id="_06abf31e-4092-43e3-af27-5a419d7b79ab" name="Bad credit">
 <errorEventDefinition/>
 </endEvent>
 <sequenceFlow id="_ad57bdee-f5a2-4221-a9a6-be6f6692879c" sourceRef="_89aa9447-1739-46d4-
87eb-c7b459e6f06e" targetRef="_3bc7dc56-15b0-4581-87d8-832427474fcb"/>
 <sequenceFlow id="_2151821f-1c15-4143-8999-425c4a39876d" sourceRef="_3bc7dc56-15b0-4581-
87d8-832427474fcb" targetRef="_b7941c03-aaa0-4afc-9c32-4d689aa440a8"/>
 <sequenceFlow id="_677cc983-f5c5-47d6-98ff-221b56599a98" name="yes" sourceRef="_b7941c03-
aaa0-4afc-9c32-4d689aa440a8" targetRef="_ca47d153-84f6-4f12-98a2-6bbc3269e3ae">
 <conditionExpression>test='yes'</conditionExpression>
 </sequenceFlow>
 <sequenceFlow id="_56128bff-1d44-4c19-a95b-3eba6ecfdaf3" sourceRef="_ca47d153-84f6-4f12-98a2-
6bbc3269e3ae" targetRef="_efd84c60-db46-404d-822a-b08451799db0"/>
 <sequenceFlow id="_db96d25e-ab43-407a-a0c6-de2a76fe4ffe" name="no" sourceRef="_b7941c03-
aaa0-4afc-9c32-4d689aa440a8" targetRef="_06abf31e-4092-43e3-af27-5a419d7b79ab">
 <conditionExpression>test='no'</conditionExpression>
 </sequenceFlow>
 </subProcess>

172| Chapter 15. Serializing Process Elements

 <boundaryEvent id="_2a05521f-e21f-4609-bc73-51e458f2f1a2" name="Bad credit" cancelActivity="true"
attachedToRef="_e7df3b40-d626-4920-bc92-d006dad77502">
 <errorEventDefinition/>
 </boundaryEvent>
 <endEvent id="_c81b1121-93e1-430a-a07d-8edc3c756301" name="Complete"/>
 <task id="_ac76b036-81f3-4adb-ad81-0be41e226d92" name="D"/>
 <endEvent id="_742c449d-0e13-41bc-83b4-dd29c633132d" name="Fail"/>
 <sequenceFlow id="_1814f042-9656-4987-bcad-cd326fa07b33" sourceRef="_3fbcb343-3a7c-4023-805f-
d12f747fdeeb" targetRef="_e7df3b40-d626-4920-bc92-d006dad77502"/>
 <sequenceFlow id="_4cbe984e-5584-4ac2-8d86-c9f31a0141f2" sourceRef="_2a05521f-e21f-4609-bc73-
51e458f2f1a2" targetRef="_742c449d-0e13-41bc-83b4-dd29c633132d"/>
 <sequenceFlow id="_e88e9485-01d4-4256-bcb6-49188bf40e9b" sourceRef="_e7df3b40-d626-4920-bc92-
d006dad77502" targetRef="_ac76b036-81f3-4adb-ad81-0be41e226d92"/>
 <sequenceFlow id="_37590ff4-87b7-4625-a30c-ac79852561a4" sourceRef="_ac76b036-81f3-4adb-ad81-
0be41e226d92" targetRef="_c81b1121-93e1-430a-a07d-8edc3c756301"/>
 </process>
</definitions>
Figure 15-2. Serialization of process model with two process levels

Note that the subProcess XML element physically encloses its child-level task elements. Also
note that boundaryEvent Bad credit is in the parent level and the endEvent Bad credit is in the
child level.

gateway
The abstract gateway class adds the optional attribute gatewayDirection to the standard
flowNode attributes and elements. This attribute, with the enumerated values Unspecified,
Converging, Diverging, and Mixed, is only used in executable processes and is not part of the
Analytic subclass. It seems redundant, as the splitting versus merging semantics are evident
from the sequence flows connected to the gateway.

The gateway conditions are not defined under the gateway element, but in the sequenceFlow
elements representing the gates.

Like the other abstract elements, gateway is not used in the process model XML. Instead, there
is a separate XML element for each gateway type. Attributes and child elements of the
gateway type elements follow the base gateway class, with the following exceptions:

• exclusiveGateway and inclusiveGateway add the optional Boolean attribute default, an
IDREF pointer to an outgoing sequence flow representing the default flow, the
sequence flow enabled if no other gate conditions are true.

• parallelGateway has no differences from the base gateway schema.

• complexGateway has default and adds a child element activationCondition, a data
expression.

Chapter 15. Serializing Process Elements | 173

• eventBasedGateway does not have default but adds two other attributes.

Optional Boolean attribute instantiate, default value false, indicates that the trigger of
any of the gates instantiates the process. When this attribute is true, the symbol
inside the diamond shape is a start event, not an intermediate event. In that case, this
element must be the first node of a top-level process or immediately follow a None
start event. As the semantics are the same as multiple triggered start events, and few
tools support the instantiating gateway shape, Method and Style deprecates
instantiate in favor of multiple triggered start events.

Optional attribute eventGatewayType, with enumerated values Exclusive and Parallel,
indicates whether the flow continues when the first gate event occurs (Exclusive, the
default) or when all of them occur (Parallel). A value of Parallel is equivalent to a
Multiple-Parallel catching intermediate event, which is not in the Analytic subclass.
Omitting this element signifies the normal event gateway behavior, and is
recommended.

event
The abstract event class adds only the child element property to the base flowNode class. We
will discuss property in Chapter 16. Like the other abstract classes, event is not used directly in
process model XML; instead each type of event is represented by a separate element.

startEvent
The startEvent element represents the start event of a process, subprocess, or event
subprocess.

• Optional Boolean attribute isInterrupting, default value true, has meaning only in an
event subprocess and should be omitted otherwise. It determines whether the event
subprocess trigger is interrupting or non-interrupting. Event subprocesses are not in
the Analytic subclass.

• Optional Boolean attribute parallelMultiple, default value false, signifies a Parallel-
Multiple start event. That means all triggers must occur in order to instantiate the
process, or trigger the event subprocess. Parallel-multiple start is not in the Analytic
subclass, so this attribute normally should be omitted.

• Child elements property, dataOutput, dataOutputAssociation, and outputSet relate to data
flow, and are discussed in Chapter 16.

• The abstract eventDefinition class defines the start event trigger. In the XML, you must
use one of the concrete eventDefinition subtypes as a child of a triggered startEvent.
These include timerEventDefinition, messageEventDefinition, signalEventDefinition, and
conditionalEventDefinition. The schema allows additional event definitions valid only
for event subprocesses, including errorEventDefinition, escalationEventDefinition,
compensateEventDefinition, and cancelEventDefinition. Others like linkEventDefinition

174| Chapter 15. Serializing Process Elements

and terminateEventDefinition are technically schema-valid, but are actually not
allowed for start events. A None start event is signified by omission of the
eventDefinition element. A Multiple start event is signified by more than one
eventDefinition element; if attribute parallelMultiple is true, it signifies a Multiple-
Parallel start event. Each eventDefinition element has trigger-specific attributes and
child elements, but these are meant for executable BPMN and are outside the
Analytic subclass. For non-executable models, an empty eventDefinition-type element
is all you need to specify the trigger.

• As an alternative to embedding an eventDefinition as direct child of a startEvent, it is
possible to point to a reusable eventDefinition root element, using eventDefinitionRef
(QName).

intermediateCatchEvent
The intermediateCatchEvent element represents a catching intermediate event with sequence
flow in and out; it is not used for a boundary event. The attributes and children of
intermediateCatchEvent are the same as those of startEvent, with the following exceptions:

• There is no isInterrupting attribute.

• The same set of eventDefinition elements is allowed by the XSD, but the only valid
ones are those allowed in Figure 7-1: messageEventDefinition, timerEventDefinition,
conditionalEventDefinition, linkEventDefinition, and signalEventDefinition. Since there is
no None catching intermediate event, at least one of the above eventDefinition
elements is required.

intermediateThrowEvent
The intermediateThrowEvent element represents a throwing intermediate event. Its attributes
and child elements are the same as those of intermediateCatchEvent, with the following
exceptions:

• There is no parallelMultiple attribute.

• The data flow-related child elements are property, dataInput, dataInputAssociation, and
inputSet. These will be discussed in Chapter 16.

• The same set of eventDefinition elements is allowed by the XSD, but the only valid
ones (per Figure 7-1) are messageEventDefinition, signalEventDefinition,
compensateEventDefinition, linkEventDefinition, and escalationEventDefinition. More
than one eventDefinition signifies a throwing Multiple event. Omission of
eventDefinition signifies a throwing None event, which is allowed; it can be used in the
diagram to indicate a particular state of the instance.

Chapter 15. Serializing Process Elements | 175

Link Event Bug
Link events are discussed in Chapter 7. The BPMN 2.0 specification contains a bug
concerning their serialization. A Link event has optional child elements source and target, each
a QName pointer to the other half of the Link event pair. Table 10.98 of the spec says that
name, source, and target are all required. This is clearly incorrect, as source and target should be
mutually exclusive for Link events; a single Link event cannot have both. However, the XSD
says the string attribute name is required, meaning a linkEventDefinition element without the
attribute name (type string) is schema-invalid.

It is bad practice to use a string type like name to link model elements together. I believe the
original intent was to use source and target for this purpose, but something got messed up
along the way. My recommendation – and this is what the itp commerce tool does, as well –
is to populate the name attribute of a linkEventDefinition with the id of its paired Link event. In
that case the names of the paired linkEventDefinition elements will not match each other; each
points instead to the id of the paired Link event element. This unambiguously connects the
Link pair, but it means the label of the Link events in the diagram, which should match, must
be something other than the name. This is inconsistent with the rest of BPMN.

boundaryEvent
The boundaryEvent element indicates an interrupting or non-interrupting boundary event. Its
attributes and child elements are the same as those of intermediateCatchEvent, with the
following exceptions:

• Required attribute attachedToRef points to the activity the event is attached to. This
attribute is QName, although I do not believe it is possible for the referenced activity
to be defined in another file.

• Optional Boolean attribute cancelActivity determines whether the event is
interrupting (true) or non-interrupting (false). The default value is true, so omission of
the attribute signifies interrupting.

• Again the XSD allows all eventDefinition elements, but the only valid ones, per Figure
7-1, are messageEventDefinition, timerEventDefinition, errorEventDefinition (interrupting
only), escalationEventDefinition, cancelEventDefinition (interrupting only),
compensateEventDefinition, conditionalEventDefinition, and signalEventDefinition. Since
there is no None boundary event, at least one eventDefinition is required. More than
one signifies a Multiple or Multiple-Parallel boundary event.

endEvent
The endEvent element indicates an end event. Its attributes and child elements are the same as
those of intermediateThrowEvent, with the following exceptions:

• The XSD allows all eventDefinition elements, but the only valid ones, per Figure 7-1,
are messageEventDefinition, errorEventDefinition, escalationEventDefinition,

176| Chapter 15. Serializing Process Elements

cancelEventDefinition, compensateEventDefinition, terminateEventDefinition, and
signalEventDefinition. Omission of an eventDefinition signifies a None end event.
More than one signifies a Multiple end event.

sequenceFlow
The element sequenceFlow is a member of the flowElement class and inherits its standard
attributes and child elements. In addition, it has the following attributes and child elements:

• sourceRef, a required IDREF attribute pointing to the flowNode at the tail of the
sequence flow.

• targetRef, a required IDREF attribute pointing to the flowNode at the head of the
sequence flow.

• isImmediate, an optional Boolean attribute indicating whether or not the sequence
flow transition occurs immediately upon completion of the sourceRef node. This is
useful information, but as it is invisible in the diagram, Method and Style
recommends omitting it. It has no default value.

• conditionExpression, an optional child element of type tExpression, discussed below.
Presence of this element indicates that the sequence flow is conditional. This is
allowed only if the sourceRef points to an activity or an exclusive, inclusive, or
complex gateway. If the sourceRef node’s default attribute points to this sequence
flow, conditionExpression must be omitted.

Expressions
Conditional expressions on the gates of an exclusive or inclusive gateway or conditional
sequence flow represent the most common use of the tExpression datatype resulting in a
Boolean value. This datatype is also used for certain gateway join conditions, loop conditions,
multi-instance activity completion conditions, and conditional events.

The spec says that in non-executable processes, tExpression is intended to define a condition or
other expression in “natural language,” and is considered “underspecified.” For executable
processes, modelers are supposed to use a subclass of tExpression called tFormalExpression,
defining a computable expression in a specified expression language. Indication that the
element is tFormalExpression is expressed by the attribute xsi:type=”tFormalExpression” (see
Figure 15-3).

 In XSD terminology, tExpression is a complex type with mixed content. That means it has both
direct text content and attributes and child elements. (Most XML datatypes have either direct
content or attributes and child elements, but not both.) Presumably the direct content of
tExpression is intended to hold the natural language text of the expression. However, the
direct content of an element of type tExpression is not what is displayed in the diagram. What
is displayed in the diagram is the name of the sequence flow, conditional event, or other object
to which the expression applies. For that reason, in non-executable models, Method and Style

Chapter 15. Serializing Process Elements | 177

recommends not using the content of conditionExpression to define natural-language sequence
flow conditions, but instead using the name (label) of the sequence flow, possibly in
combination with the name of the gateway.

Formal Expressions
The examples in the spec all use tFormalExpression, which extends tExpression with two
additional optional attributes:

• language, a URL that indicates the expression language, if needed to override the
default type language declared in definitions.

• evaluatesToTypeRef, a QName indicating the datatype of the expression output, such
as xsd:boolean.

Usage of formal expressions is not clearly defined in the spec. The executable process
example shown below is clipped from OMG’s non-normative BPMN 2.0 by Example v1.0
document,21 and modified slightly:

<exclusiveGateway name="Result?" gatewayDirection="Diverging" id="_1-128" />
<sequenceFlow sourceRef="_1-128" targetRef="_1-252" name="2nd level issue" id="_1-402">

<conditionExpression xsi:type="tFormalExpression"
language=”http://www.jcp.org/en/jsr/detail?id=245” evaluatesToTypeRef=”xsd:boolean”>

${getDataObject("TicketDataObject").status == "Open"}
</conditionExpression>

</sequenceFlow>
<sequenceFlow sourceRef="_1-128" targetRef="_1-150" name="Issue resolved" id="_1-396">

<conditionExpression xsi:type="tFormalExpression"
language=”http://www.jcp.org/en/jsr/detail?id=245” evaluatesToTypeRef=”xsd:boolean”>

${getDataObject("TicketDataObject").status == "Resolved"}
</conditionExpression>

</sequenceFlow>

Figure 15-3. Serialization of gateway conditions using formal expressions

This fragment illustrates formal expressions defining the gate conditions on an exclusive
gateway labeled Result? The language attribute points to the URL for the Java Unified
Expression Language (UEL), overriding the global expressionLanguage value in definitions. The
evaluatesToTypeRef indicates a Boolean type in the default XSD type language. The direct
content, with the ${ } format, is the formal expression itself. The BPMN XPath extension
function getDataObject is probably unnecessary for non-XPath expression languages.

21 http://www.omg.org/cgi-bin/doc?dtc/10-06-02.pdf

178| Chapter 15. Serializing Process Elements

In the non-executable form of this process model, the process logic would be fully specified by
the gateway label Result? in combination with the gate labels 2nd level issue and Issue resolved.
However, technically a conditionExpression should be present on each gate, either empty as in
Figure 15-4 or with a natural language string generated from the gateway and gate labels, as
in Figure 15-2.

<exclusiveGateway name="Result?" gatewayDirection="Diverging" id="_1-128" />
<sequenceFlow sourceRef="_1-128" targetRef="_1-252" name="2nd level issue" id="_1-402">

<conditionExpression />
</sequenceFlow>
<sequenceFlow sourceRef="_1-128" targetRef="_1-150" name="Issue resolved" id="_1-396">

<conditionExpression/>
</sequenceFlow>

Figure 15-4. Serialization of non-executable gateway conditions

laneSet and lane
Both process and subProcess elements may contain lanes. Lanes are not purely graphical
constructs but semantic elements in their own right. In traditional flowcharting, lanes signify
the performer or owner of the activities – primarily human tasks – that they contain. BPMN
2.0 generalizes the concept to support any user-defined classification of flow nodes. In fact, a
single BPMN model may define multiple classifications, called laneSets, for the same set of
flow nodes. It is very rare to see multiple laneSets – I have not yet come across it in the wild –
but the spec allows it. Even if there is only one, all lane elements must be enclosed in a laneSet
element.

In BPMN 2.0, laneSets and lanes are specified at independently at each process level. Each lane
element in a process level contains a list of flowNodeRefs – pointers to flowNodes contained in
the lane. Sequence flows, data objects, and any other shapes that are not flowNodes should
not be referenced by flowNodeRef.

BPMN 1.2 had a rule that lanes could not be drawn inside an expanded subprocess shape, but
there is no such rule in BPMN 2.0. In BPMN 2.0, lane and subProcess are semantic elements,
regardless of their graphical representation. It might be difficult for a BPMN tool to draw
lanes inside an expanded subprocess shape, but that is a tool issue not a BPMN issue.

Within a single process level, it is possible to have lanes within lanes. More accurately, a lane
element may itself contain a childLaneSet. The childLaneSet has the same datatype as a laneSet.
It contains lanes, each with flowNodeRefs and possibly more childLaneSets in a recursively
nested structure. If nested lanes are drawn in the process diagram, the serialization must use
childLaneSet.

Artifacts
Artifact is BPMN’s term for elements that provide visual annotation of the diagram but do not
directly specify sequence flow or message flow behavior. There are two types of artifacts,
both in the Analytic subclass: textAnnotation, user-defined text linked to an element with an

Chapter 15. Serializing Process Elements | 179

association connector; and group. Artifacts may belong either to a collaboration or to a process, as
discussed below.

textAnnotation
The content of a textAnnotation element is defined by its child element text. Assignment of a
textAnnotation element to a process or collaboration is determined by the association linking it to
a model node.

The association is non-directional, so its associationDirection attribute either has a value of None
(the default) or is omitted. Attributes sourceRef and targetRef of association are remote
(QName) references. One of them points to the textAnnotation. If the other points to a
flowElement, both the textAnnotation and association belong to the flowElement’s process.
Otherwise they belong to the collaboration.

group
Normally a group element just has an id, which is referenced by a shape in the graphical
model. The Analytic subclass also includes the optional attribute categoryValueRef, a QName
pointer to a root element category/categoryValue. However, category is not in the Analytic
subclass and invisible in the diagram, so I believe categoryValueRef should not be in the
Analytic subclass, either.

181

CHAPTER 16

16. Serializing Data Flow

Data and data flow are primarily concerns of executable BPMN, but data object, data store, and
data association are members of the Analytic subclass and are sometimes used in non-
executable process diagrams. Serializing these process elements properly in non-executable
BPMN requires creating dataInput, dataOutput, and other related elements not listed in Figure
13-1. In this chapter we will discuss serialization of data flow in non-executable Level 2
BPMN. We will discuss data flow in executable BPMN in Chapter Chapter 20.

Non-Executable Data Flow
Figure 16-1 illustrates data flow in a non-executable model. The data object Contract
[unsigned] represents data flow from the start event to task A. Task B updates the data store
Contracts database. The dotted line connectors are directional data associations. In the diagram,
the data associations appear to connect to the start event and task elements directly, but in the
XML they actually connect to data inputs or outputs of those elements.

Figure 16-1. Non-executable data flow

dataObject
A data object in BPMN represents a local instance variable. It is visible only within the process
level in which it is defined and its child levels, and the variable disappears when the process

182| Chapter 16. Serializing Data Flow

level instance is complete. In the BPMN 2.0 metamodel, dataObject is both a flowElement,
meaning it has id and name and belongs to a process, and an item-aware element, meaning it
points to an itemDefinition. BPMN 2.0 uses the term item to allow item-aware elements to
describe not just data, i.e. information items, but physical items as well. Because its lifetime is
limited to that of the process level instance, it is not likely that a dataObject represents a
physical item, but it is theoretically possible.

The itemDefinition, a root element in the BPMN structure, is typically used only in executable
models. In that case, the dataObject’s attribute itemSubjectRef points to an itemDefinition, which
in turn points to a datatype, typically imported from an external XSD file. The optional
attribute isCollection (default value false) indicates the dataObject represents an array of data
elements. If isCollection is true, the data object shape carries the three-bar multi-instance
marker.

An item-aware element also has optional child dataState with string attribute name. In Figure
16-1, Contract is the dataObject name, and unsigned is its dataState name. The label in the
diagram is supposed to concatenate them, wrapping the dataState name, if any, in square
brackets. Many tools simply make “Contract [unsigned]” the dataObject name, with no dataState;
in non-executable BPMN, that is probably OK.

dataInput and dataOutput
During the drafting of BPMN 2.0, the technical committee argued for a while whether it
would be acceptable for a data association to connect directly to an activity or event element,
but in the end decided not to allow it. The BPMN metamodel says that the source and target
of a data association must be an item-aware element. A flowNode element is not item-aware, but
its dataInputs and dataOutputs are. That means these child elements must be present in the
XML in order to create a valid data association connection to an activity or event. That is
unfortunate, since dataInput and dataOutput are not normally displayed in the diagram and
are important only in executable models. Requiring them makes the serialization more
verbose, but it is fairly straightforward for the implementer.

Tasks and processes have child element ioSpecification, which defines their input and output
data requirements. The ioSpecification contains a list of dataInput and dataOutput elements,
plus at least one inputSet pointing to needed dataInputs and at least one outputSet pointing to
needed dataOutputs. ioSpecification is optional, but if included it must contain both inputSet
and outputSet.

Events do not have ioSpecification, but they do have dataInput or dataOutput. If a non-
executable process diagram depicts data flow to or from the event, the serialization must
include these item-aware elements.

dataInputAssociation and dataOutputAssociation
A data association connector looks just like the regular association connector used with
textAnnotation, except that data association is by default directional, drawn with an arrowhead.

Chapter 16. Serializing Data Flow | 183

In the XML both its sourceRef and targetRef must point to an item-aware element. That means
they do not point to a task or event element directly but to one of its dataInput or dataOutput
elements. Actually, in the XSD there are separate elements for dataInputAssociation and
dataOutputAssociation. The first connects from an item-aware element, such as dataObject, to a
dataInput, and the second from a dataOutput to an item-aware element. In executable models,
the dataAssociation may include a mapping.

dataStore and dataStoreReference
A dataStore is also an item-aware element, but, unlike dataObject, it is persistent and accessible
from any process element. In the XSD it is defined as a root element, so it does not belong to a
particular process or subProcess. However, data store interactions with a process element via
data association are part of a particular process and must use the element dataStoreReference.
dataStoreReference is a flowElement, i.e. , part of a process, that points to the dataStore global
element. In executable models, the dataStore element points in turn to the itemDefinition.

Example: Non-Executable Data Flow
At this point it should be obvious that serializing data flow, even in non-executable BPMN, is
verbose, involving multiple levels of indirection, and requires elements that are not visible in
the diagram. For example, the serialization of the simple flow depicted in Figure 16-1 is
shown below.

<definitions targetNamespace="http://www.itp-commerce.com"
xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL" xmlns:itp="http://www.itp-commerce.com/BPMN2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL schemas/BPMN20.xsd" exporter="Process
Modeler 5 for Microsoft Visio" exporterVersion="5.2742.13663 SR6" itp:name="My Diagram" itp:version="1.0"
itp:author="bruce" itp:creationDate="8/5/2011 8:43:11 AM" itp:modificationDate="8/5/2011 10:17:52 AM"
itp:createdWithVersion="5.2742.13663 SR6" itp:conformanceSubClass="Full" id="_a26428bb-9287-4346-b659-
1d89f5d41217">
 <process id="_5c311ebc-4ae3-41aa-a2f5-a7802720c773" name="Main Process" processType="None">
 <startEvent id="_c529a130-7805-4b9e-90b7-8d923e4813ca" name="Receive contract">
 <dataOutput id="do_c529a130-7805-4b9e-90b7-8d923e4813ca"/>
 <dataOutputAssociation id="_5f837dfc-d686-4e1c-bb9e-67123e59cadf">
 <sourceRef>do_c529a130-7805-4b9e-90b7-8d923e4813ca</sourceRef>
 <targetRef>_37bff1e7-a72c-434a-81b9-2873d11b8845</targetRef>
 </dataOutputAssociation>
 <messageEventDefinition/>
 </startEvent>
 <task id="_f2509706-84ef-4f59-8fdb-5f25b3102686" name="A">
 <ioSpecification>
 <dataInput id="di_f2509706-84ef-4f59-8fdb-5f25b3102686"/>
 <inputSet>
 <dataInputRefs>di_f2509706-84ef-4f59-8fdb-5f25b3102686</dataInputRefs>
 </inputSet>
 <outputSet/>
 </ioSpecification>
 <dataInputAssociation id="_985c2eb0-3265-4f13-a295-e29778b1c973">
 <sourceRef>_37bff1e7-a72c-434a-81b9-2873d11b8845</sourceRef>
 <targetRef>di_f2509706-84ef-4f59-8fdb-5f25b3102686</targetRef>

184| Chapter 16. Serializing Data Flow

 </dataInputAssociation>
 </task>
 <task id="_63b74f88-2f16-4808-a953-4a082d28bdb3" name="B">
 <ioSpecification>
 <dataOutput id="do_63b74f88-2f16-4808-a953-4a082d28bdb3"/>
 <inputSet/>
 <outputSet>
 <dataOutputRefs>do_63b74f88-2f16-4808-a953-4a082d28bdb3</dataOutputRefs>
 </outputSet>
 </ioSpecification>
 <dataOutputAssociation id="_a9afd7e2-fe6e-41b7-9a7b-6ba39d2f63c8">
 <sourceRef>do_63b74f88-2f16-4808-a953-4a082d28bdb3</sourceRef>
 <targetRef>_474935d1-d1bf-4244-b5b2-3a3bffa9a4d5</targetRef>
 </dataOutputAssociation>
 </task>
 <endEvent id="_846d6306-9380-4e56-aee7-532d1ef96fc5"/>
 <dataObject id="_37bff1e7-a72c-434a-81b9-2873d11b8845" name="Contract [unsigned]"/>
 <sequenceFlow id="_88c3ac5d-877d-465e-9669-c7f6b2443105" sourceRef="_c529a130-7805-4b9e-90b7-
8d923e4813ca" targetRef="_f2509706-84ef-4f59-8fdb-5f25b3102686"/>
 <sequenceFlow id="_689e46f9-5213-49fd-8050-4649e6368cf1" sourceRef="_f2509706-84ef-4f59-8fdb-
5f25b3102686" targetRef="_63b74f88-2f16-4808-a953-4a082d28bdb3"/>
 <sequenceFlow id="_f2d060d3-2725-436b-99e3-6a2169b96365" sourceRef="_63b74f88-2f16-4808-a953-
4a082d28bdb3" targetRef="_846d6306-9380-4e56-aee7-532d1ef96fc5"/>
 <dataStoreReference id="_474935d1-d1bf-4244-b5b2-3a3bffa9a4d5" name="Contracts database"
dataStoreRef="_a3b16297-1657-497d-ab57-0f64e38f27a3"/>
 </process>
 <dataStore id="_a3b16297-1657-497d-ab57-0f64e38f27a3" name="Contracts database"/>
</definitions>

Figure 16-2. Serialization of non-executable data flow

Note the following things from Figure 16-2:

• Out of the start event, the sourceRef of the dataOutputAssociation is not the startEvent
itself but its dataOutput element. This element must be generated by the tool.

• In Task A, the targetRef of the dataInputAssociation is not the task itself but its dataInput
element, child of ioSpecification. Even though there is only one dataInput defined for
this task, the XSD requires inputSet referencing the dataInput. Even though there is no
dataOutput, the XSD requires an empty outputSet element. Similar considerations
apply to Task B.

• The targetRef of the dataOutputAssociation from Task B is the dataStoreReference,
defined within the process, not the dataStore, which is a root element. The data store
shape in the diagram must generate both the dataStore and the dataStoreReference
elements in the serialization.

• In an executable model, the dataStore and dataObject elements would have pointers to
itemDefinition root elements, which in turn would point to their datatype definition.
We will revisit this in Chapter Chapter 20.

Chapter 16. Serializing Data Flow | 185

More on Data Inputs and Data Outputs
There remains some disagreement within the BPMN expert community – I would say within
the BPMN 2.0 technical committee itself – about certain aspects of dataInput and dataOutput.
The spec is ambiguous on the matter. There was a flurry of debate about it for a while, and in
the end the only thing everyone could agree on was that the spec had made a mess of it that
would need fixing in some future BPMN 2.1. The following is my view of it.

The specification clearly says dataInput and dataOutput describe the data requirements, or
interface, of a task or process. That is in contrast to a dataObject, which represents a stored data
value, or variable. The value of a dataObject is stored and may be mapped and communicated
via dataInputAssociation to any process element, such as a task, in the same process level (or
one of its child levels). On the other hand, a populated dataInput value, when received, is used
immediately by the element in which it is defined; it is not stored for mapping and
communication to other elements in the process level.

In the semantic model, the spec says, “Data Inputs MAY have incoming Data Associations”
[italics in original]. We have already seen in Figure 16-2 examples of dataInputAssociation
targeting a dataInput. The spec does not say a data input may have outgoing data associations
but it does not explicitly rule it out. This is at the heart of the controversy over the meaning
and use of a dataInput of a process. Some people say maintain that the dataInput of a process is
not simply an interface but also a stored input variable, just like a dataObject. Their
justification is that the metamodel and XSD allow a data association to link any pair of item-
aware elements, and you can see examples of this serialization in the non-normative BPMN
2.0 by Example document on the OMG website22.

But I disagree with that view. In fact, the spec is full of cases where the narrative disallows
constructs that are schema-valid. My view is that a dataInput is an interface only, not a stored
value, and may only have incoming data associations, not outgoing data associations. Further
evidence of this for a process dataInput is the fact that its incoming data associations may not
come from inside the process, only from outside.

subProcess dataInput and dataOutput are confusing as well. According to the spec narrative, a
subProcess may not have dataInput or dataOutput, even though the XSD allows it. However,
this makes little sense, as there is no apparent difference between the input data requirements
of a subprocess and a task. And if Task A in Figure 16-1 were Subprocess A instead, there
would be no way to serialize the data flow! I suggest ignoring this statement of the spec
narrative.

dataInput and dataOutput can be represented visually in the diagram. The shape looks like a
data object with a white arrow (dataInput) or black arrow (dataOutput) arrow icon inside
(Figure 16-3). However, the spec appears to limit this graphical representation to a dataInput

22 http://www.omg.org/cgi-bin/doc?dtc/10-06-02.pdf

186| Chapter 16. Serializing Data Flow

or dataOutput of a process, either a top-level process or a called process, i.e., a callActivity to a
reusable process. The dataInput of a task is not supposed to be displayed graphically.

Figure 16-3. Data input and Data output

Also, the spec suggests that the only time a dataInputAssociation to a process dataInput would be
displayed graphically is in a called process represented as an expanded call activity shape. And
even in that case, the semantic element containing the dataInput should be the callActivity, not
the called process.

In short, the spec is a mess when it comes to dataInput and dataOutput of a process.
Fortunately, to serialize data flow depicted in the diagram, implementers only need concern
themselves with the data inputs and outputs of activities and events, where the rules are
clearer.

187

CHAPTER 17

17. The BPMNDI Graphical Model

So far we have covered only serialization of the BPMN semantic model. BPMN 2.0 also
provides an XML schema for the graphical model, called BPMN Diagram Interchange, or
BPMNDI. It describes the location and size of shapes and connectors, as well as the linked
page structure of the model diagrams.

A proper XML schema for BPMNDI did not exist until the Finalization phase of BPMN 2.0. In
the beta specification, OMG’s push for a single metamodel supporting any diagram type,
including both UML and BPMN, prevented definition of a proper XSD for the BPMN
graphical model. However, that universal graphical metamodel, which can still be seen in
Appendix B of the BPMN 2.0 spec, made XML interchange of BPMN diagrams between
modeling tools impractical, if not impossible. BPMNDI, as defined in the final version of the
spec, not only makes BPMN model interchange possible but allows individual BPMN models
to specify their page structure in a usable way.

In BPMN, the graphical model can never stand alone. It must be accompanied by the
semantic model information. For example, the only way BPMNDI distinguishes a task shape
from a Timer boundary event, or a sequence flow from a data association, is via the shape’s
bpmnElement attribute, a pointer to the corresponding semantic element. Information is not
duplicated between the BPMNDI and the semantic model, but instead is split between them.
For example, the text of a shape label is in the semantic model; the label’s position and font
information is in BPMNDI.

It is rare that one BPMN tool will be able to exactly reproduce the graphical layout created and
serialized by another tool. Most tools have their own graphics libraries that constrain the size,
aspect ratio, and label position of each shape. On import, such a tool cannot arbitrarily scale
the shapes to match the original diagram exactly, but BPMNDI allows them at least to
approximate the layout. Also, BPMNDI reveals the page structure of the original model – for
example, whether a child process level is drawn inside an expanded subprocess shape or in a
separate hyperlinked diagram.

188| Chapter 17. The BPMNDI Graphical Model

BPMNDI Basics
BPMNDI does not use the BPMN 2.0 namespace. It has its own namespace, or rather its own
three namespaces. The principal one, http://www.omg.org/spec/BPMN/20100524/DI (usually
assigned the prefix bpmndi) is used for most BPMNDI elements, including the top-level
BPMNDiagram element. But the dc:Bounds element describing the location and size of a shape
uses a second namespace, http://www.omg.org/spec/DD/20100524/DC (prefixed dc), and the
di:waypoint element describing the bendpoints of a connector uses a third one,
http://www.omg.org/spec/DD/20100524/DI (prefixed di).

The graphical model comprises multiple pages, or diagrams, each serialized in BPMNDI with
a BPMNDiagram and its child BPMNPlane element. (The purpose of using both
BPMNDiagram and BPMNPlane elements is unclear, since every BPMNDiagram element
MUST have exactly one child BPMNPlane.) Unlike a page in Visio, a diagram in BPMNDI has
no page size; it is semi-infinite in extent. The origin of the coordinate system is the top left
corner, and the page extends to infinity in the x and y directions. Negative coordinates are
not allowed.

The location of a shape is defined as the x,y coordinates of the top left corner of a rectangular
bounding box enclosing the shape. The size of a shape is likewise the width and height of that
bounding box. Tools do not necessarily employ the BPMN coordinate system internally. For
example, Visio’s native coordinate system has the origin at the bottom left corner of the page
and defines shape locations as the center of the rectangular bounding box. The implementer
must convert between the tool’s native coordinates and BPMN coordinates upon export or
import.

Each page contains a list of two-dimensional shapes (BPMNShape) and connectors
(BPMNEdge), with location and size information for each. The specific shape or connector
represented is defined by attribute bpmnElement, a remote (QName) pointer to the id of a
BPMN semantic element. This attribute is effectively required for all shapes and connectors,
even though that requirement is not enforced by the XSD.

Process Levels and Pages
A BPMN model may include multiple process elements. Each represents a top-level BPMN
process, which can either stand alone or be invoked by a callActivity as a reusable subprocess.
Each process is a hierarchical structure comprising multiple process levels. Each process level is
enclosed in the XML structure by a subprocess-type element, either a subProcess,
adHocSubProcess, transaction, or callActivity. The process level that includes the subprocess-
type element itself is the parent of the process level that includes its expanded activity flow.

The child-level flow may be represented graphically either on the same page as the parent
level, enclosed in an expanded subprocess shape, or on a separate linked page, using a collapsed
subprocess shape on the parent-level page and no subprocess shape on the child-level page. In
the Method and Style section of this book, we called the former the inline modeling style and
the latter the hierarchical modeling style, and we indicated a preference for the hierarchical style.

Chapter 17. The BPMNDI Graphical Model | 189

Again we need to emphasize that this choice of graphical representation is specified only in
BPMNDI; it is not part of the semantic model.

Here is how BPMNDI makes that distinction. Of critical importance is the bpmnElement
attribute of BPMNPlane, that is, the semantic element referenced by the page in the graphical
model. This is a required QName pointer to a process, collaboration, or subprocess-type element
(subProcess, callActivity, transaction, or adHocSubProcess). These pointers for each BPMNPlane
describe the page structure of the graphical model. A BPMNPlane that points to a subprocess-
type semantic element is, by definition, a child-level page. Any other page is, by definition, a
top-level page.

Internal consistency demands that a child-level page may contain only flow elements belonging
to the referenced subprocess-type element. It may not, for example, also include elements of a
separate top-level process (“Process2”) enclosed in a pool shape on the page. If it could, there
would be no link between that page in BPMNDI and Process2 in the semantic model.

On the other hand, a top-level page may contain elements belonging to more than one process,
as long as shapes belonging to at most one process are not enclosed in a pool shape. If a top-
level page contains flow elements of more than one process, the bpmnElement attribute of its
BPMNPlane should point to a collaboration. If it contains elements of a single process only,
bpmnElement should point either to a process or collaboration.

BPMNDiagram
The top-level element in BPMNDI is BPMNDiagram, representing a page. A model may have
any number of BPMNDiagram elements. A semantic-only BPMN model, by definition, is one
with no BPMNDiagram elements. Each BPMNDiagram has a required child element
BPMNPlane, which serves as the container for the shapes and connectors on the page. A
BPMNPlane is not like a layer in Visio or Autocad; a BPMNDiagram may not have more than
one. Thus there is no apparent reason why a separate BPMNPlane element is necessary; it’s
just the way the XSD works.

Both BPMNDiagram and BPMNPlane effectively stand for the page as a whole. Both elements
have an id, but only BPMNDiagram has a name.

• The name attribute of BPMNDiagram should contain the name of the page in the
BPMN tool.

• The resolution attribute of BPMNDiagram is a number defining the scale in pixels per
inch. This attribute is needed to convert BPMNDI location and size values in pixels to
lengths on the page. For some strange reason, there is nothing in BPMNDI that
allows an alternative scale unit such as pixels per cm.

• Unlike documentation in the semantic model, which is an element, documentation for
BPMNDiagram is an attribute.

In addition to the required child element BPMNPlane, BPMNDiagram has child
BPMNLabelStyle (optional, unbounded), which specifies font styles used in labels on the page.

190| Chapter 17. The BPMNDI Graphical Model

BPMNPlane
BPMNPlane contains an ordered list of BPMNShape and BPMNEdge child elements
representing the shapes and connectors on the page. The order of the shapes and edges inside
a BPMNPlane determines their Z-order, from back to front.

The attribute bpmnElement of a BPMNPlane defines the page as either top-level or child-level,
as discussed previously. If it points to a subprocess-type element, it is a child-level page.
Otherwise it is a top-level page.

BPMNShape
The BPMNShape element represents the visualization of a single BPMN semantic element
other than a connector.

• Attribute bpmnElement is a QName pointer to a BPMN semantic element. It is the
only indication of the type of shape represented. The spec narrative says this
attribute is required, although that is not enforced by the XSD.

• Optional Boolean attribute isHorizontal applies to pool and lane shapes only. There is
no default value. A pool shape is one for which bpmnElement points to a participant in
the semantic model.

• Optional Boolean attribute isExpanded applies to subprocess-type elements only
(subProcess, transaction, adHocSubProcess, or callActivity). There is no default value. A
BPMNShape element with attribute bpmnElement pointing to a subprocess-type
element represents a collapsed subprocess shape if attribute isExpanded equal to false, and
an expanded subprocess shape if attribute isExpanded is true.

• Optional Boolean attribute isMarkerVisible applies only to exclusiveGateway elements.
There is no default value. A true value indicates the X symbol is displayed inside the
gateway diamond.

• dc:Bounds is a required child element defining the location and size coordinates of a
rectangular bounding box surrounding the shape. To convert to inches, divide the
dc:Bounds coordinate values by the BPMNDiagram attribute resolution. Location
coordinates x and y are required, type xsd:double, and locate the top left corner of the
bounding box. Size coordinates width and height are also required, type xsd:double.

• Optional child element BPMNLabel is used to define location and font style of
diagram labels. The label text is defined by the corresponding semantic element.
Attribute labelStyle is a QName pointer to BPMNLabelStyle child of BPMNDiagram.
Child element dc:Bounds defines the label location and size.

In the graphical model, a BPMNShape element may not contain another BPMNShape element,
even if one shape is drawn inside the other. For example, a task shape may be drawn inside a
pool shape, but their BPMNShape elements are siblings, children of the same BPMNPlane
element.

Chapter 17. The BPMNDI Graphical Model | 191

BPMNEdge
A BPMNEdge element is the graphical representation of a single BPMN connector.

• Attribute bpmnElement is a QName pointer to a semantic connector element. It is the
only indication of the type of connector represented. The spec narrative says it is
required, although that is not enforced by the XSD.

• Optional QName attributes sourceElement and targetElement are pointers to BPMNDI
elements. The spec says these are only to be used when those shapes are NOT the
same as those whose bpmnElement references point to the semantic connector’s
sourceRef and targetRef elements. An example might be the “visual shortcut” linking
a data object to a sequence flow in the diagram.

• Optional attribute messageVisibleKind (enumerated values initiating, non-initiating)
applies only to message flows referencing a message. It should be used only if the
message symbol is displayed on the message flow. A value of initiating should be
displayed with white envelope, non-initiating with shaded envelope.

• Required child element di:waypoint is an ordered list of x,y coordinates from the
source to the target of the connector. At least two di:waypoint elements are required
for each BPMNEdge. Waypoints between the first and last are bendpoints of the
connector. Each di:waypoint has required child elements x and y, type xsd:double.

• Optional child element BPMNLabel is the same as in BPMNShape.

BPMNDI Examples
Figure 17-1 illustrates a simple BPMN process. The serialization, including BPMNDI, is
shown in Figure 17-2.

Figure 17-1. A simple process model

<definitions targetNamespace="http://www.itp-commerce.com"
xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL" xmlns:itp="http://www.itp-
commerce.com/BPMN2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL schemas/BPMN20.xsd"
exporter="Process Modeler 5 for Microsoft Visio" exporterVersion="5.2742.13663 SR6" itp:name="My
Diagram" itp:version="1.0" itp:author="bruce" itp:creationDate="8/11/2011 3:26:19 PM"
itp:modificationDate="8/11/2011 3:27:51 PM" itp:createdWithVersion="5.2742.13663 SR6"
itp:conformanceSubClass="Full" id="_a84f7a92-b55d-4de1-a18f-901ae69cfce7">
 <process id="_9c6890e1-cb48-4996-bbcc-93f7932018d8" name="Main Process" processType="None">
 <startEvent id="_3d4ea3bc-62fe-4db2-af78-565fff63f442"/>
 <task id="_a904e6fa-2864-4c6f-9bf3-806387908aaf" name="A"/>
 <endEvent id="_cbd876c6-f3a7-4ed5-a27d-48e75d5ced83" name="Process complete"/>
 <sequenceFlow id="_6ef08698-2d78-4357-a843-08eebc32b64d" sourceRef="_3d4ea3bc-62fe-

192| Chapter 17. The BPMNDI Graphical Model

4db2-af78-565fff63f442" targetRef="_a904e6fa-2864-4c6f-9bf3-806387908aaf"/>
 <sequenceFlow id="_413a3714-a3dd-4cc2-8bbe-1f6c9448b7ec" sourceRef="_a904e6fa-2864-
4c6f-9bf3-806387908aaf" targetRef="_cbd876c6-f3a7-4ed5-a27d-48e75d5ced83"/>
 </process>
 <bpmndi:BPMNDiagram name="My Diagram (1)" resolution="72"
xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI">
 <bpmndi:BPMNPlane id="_1" bpmnElement=”_9c6890e1-cb48-4996-bbcc-93f7932018d8”>
 <bpmndi:BPMNShape id="_8A224598-E150-4114-8679-BB572A629081"
bpmnElement="_3d4ea3bc-62fe-4db2-af78-565fff63f442" itp:label="(unnamed)"
itp:elementType="startEvent">
 <dc:Bounds x="209.763779527559" y="232.44094488189" width="17.007874015748"
height="17.007874015748" xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"/>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNShape id="_2A8B7F30-0E05-44B0-A282-B93B71A197AF"
bpmnElement="_a904e6fa-2864-4c6f-9bf3-806387908aaf" itp:label="A" itp:elementType="task">
 <dc:Bounds x="263.622047244095" y="219.685039370079" width="85.0393700787402"
height="42.5196850393701" xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"/>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNShape id="_D37840EE-7D36-4296-98D7-14A30BE6E5AE"
bpmnElement="_cbd876c6-f3a7-4ed5-a27d-48e75d5ced83" itp:label="Process complete"
itp:elementType="endEvent">
 <dc:Bounds x="396.850393700787" y="232.44094488189" width="17.007874015748"
height="17.007874015748" xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"/>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNEdge id="_AE5164CB-05B3-428F-94B6-BA3B272D7F75"
bpmnElement="_6ef08698-2d78-4357-a843-08eebc32b64d" itp:label="(unnamed)"
itp:elementType="sequenceFlow" >
 <di:waypoint x="226.771653543307" y="233.858267716535"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"/>
 <di:waypoint x="263.622047244095" y="233.858267716535"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"/>
 </bpmndi:BPMNEdge>
 <bpmndi:BPMNEdge id="_894F23B9-22F7-40B7-B767-96B01D48C677"
bpmnElement="_413a3714-a3dd-4cc2-8bbe-1f6c9448b7ec" itp:label="(unnamed)"
itp:elementType="sequenceFlow" >
 <di:waypoint x="348.661417322835" y="233.858267716535"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"/>
 <di:waypoint x="396.850393700787" y="233.858267716535"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"/>
 </bpmndi:BPMNEdge>
 </bpmndi:BPMNPlane>
 </bpmndi:BPMNDiagram>
</definitions>

Figure 17-2. Serialization of simple process model, including BPMNDI

Note the following about Figure 17-2:

• The name attribute of BPMNDiagram corresponds to the page name in Visio.

Chapter 17. The BPMNDI Graphical Model | 193

• The bpmnElement attribute of BPMNPlane points to the process, indicating a top-level
page.

• The di and dc namespaces were not declared in definitions,, but instead declared in
each BPMNDI element where used. This is allowed but results in verbose XML.

• Private attributes in the itp namespace identifying the shape type and label are there
for the tool’s own use. Such extensions are allowed by the XSD but are not required
for model interchange.

Figure 17-3 shows the top-level diagram of a hierarchical model; Figure 17-4 shows the child-
level expansion of Process order. The serialization, including BPMNDI, is shown in Figure
17-5.

Figure 17-3. Simple hierarchical model, top level

Figure 17-4. Simple hierarchical model, child level

<definitions targetNamespace="http://www.itp-commerce.com"
xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL" xmlns:itp="http://www.itp-
commerce.com/BPMN2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL schemas/BPMN20.xsd"
exporter="Process Modeler 5 for Microsoft Visio" exporterVersion="5.2742.13663 SR6" itp:name="My
Diagram" itp:version="1.0" itp:author="bruce" itp:creationDate="8/11/2011 5:27:45 PM"
itp:modificationDate="8/11/2011 5:38:23 PM" itp:createdWithVersion="5.2742.13663 SR6"

194| Chapter 17. The BPMNDI Graphical Model

itp:conformanceSubClass="Full" id="_f008c590-be03-4ed9-8923-a3c80b07121c">
 <process id="_ab4160fa-a43a-40bb-8c7e-b26919f97deb" name="Main Process"
processType="None">
 <startEvent id="_75454980-4128-4083-95d7-0ef85b52ecba" name="Receive order">
 <messageEventDefinition/>
 </startEvent>
 <subProcess id="_31f4992c-a912-4828-b67b-3c430d841189" name="Process order"
itp:isCollapsed="true" itp:logicalSheetId="f5203bf0-5def-4d91-91ae-1e25ae5e4403">
 <startEvent id="_7883fbf8-a2c9-469f-8084-2bab5e877326"/>
 <task id="_88e44689-8fed-476a-b4bc-42e894c23fab" name="Check credit"/>
 <task id="_817bf4cf-4ede-407c-8624-da8dc56d78c4" name="Fulfill order"/>
 <task id="_bd2d2300-de55-4aa0-baf3-f43398a36666" name="Send invoice"/>
 <endEvent id="_da813ae8-7300-4d0c-8cb3-032a84f4d77f"/>
 <sequenceFlow id="_f544e6ce-dbfe-4e01-a942-581ea7a76d17" sourceRef="_bd2d2300-
de55-4aa0-baf3-f43398a36666" targetRef="_da813ae8-7300-4d0c-8cb3-032a84f4d77f"/>
 <sequenceFlow id="_5c3838c3-1fa1-45b2-a4c6-a0f66d592f3f" sourceRef="_7883fbf8-a2c9-
469f-8084-2bab5e877326" targetRef="_88e44689-8fed-476a-b4bc-42e894c23fab"/>
 <sequenceFlow id="_6a7a06bb-bb53-4861-818c-8bb0f7a2a942" sourceRef="_88e44689-
8fed-476a-b4bc-42e894c23fab" targetRef="_817bf4cf-4ede-407c-8624-da8dc56d78c4"/>
 <sequenceFlow id="_fecb259c-2083-4d9f-919b-bec391354605" sourceRef="_817bf4cf-4ede-
407c-8624-da8dc56d78c4" targetRef="_bd2d2300-de55-4aa0-baf3-f43398a36666"/>
 </subProcess>
 <endEvent id="_5d9f3cba-4787-4420-b1b3-c7666f8a837d"/>
 <sequenceFlow id="_cf8bf2c6-c959-45f4-93e2-cdce3175850e" sourceRef="_75454980-4128-
4083-95d7-0ef85b52ecba" targetRef="_31f4992c-a912-4828-b67b-3c430d841189"/>
 <sequenceFlow id="_8dadf786-45a3-4594-a56a-02375207afd8" sourceRef="_31f4992c-a912-
4828-b67b-3c430d841189" targetRef="_5d9f3cba-4787-4420-b1b3-c7666f8a837d"/>
 </process>
 <collaboration id="_7fe9461f-f0b3-4beb-a664-b4034c8cf4da">
 <participant id="_357f89aa-eb8f-4014-9548-0928d47192a7" name="Customer"/>
 <participant id="p__ab4160fa-a43a-40bb-8c7e-b26919f97deb" name="Main Process"
processRef="_ab4160fa-a43a-40bb-8c7e-b26919f97deb"/>
 <messageFlow id="_36ae2e66-cbfe-451a-9a7b-52539da0702b" name="Invoice"
sourceRef="_bd2d2300-de55-4aa0-baf3-f43398a36666" targetRef="_357f89aa-eb8f-4014-9548-
0928d47192a7"/>
 <messageFlow id="_daf3f8e0-f6f5-491a-b04f-aa54caf62a39" name="Invoice"
sourceRef="_31f4992c-a912-4828-b67b-3c430d841189" targetRef="_357f89aa-eb8f-4014-9548-
0928d47192a7"/>
 </collaboration>
 <bpmndi:BPMNDiagram name="My Diagram (1)" resolution="72"
xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI">
 <bpmndi:BPMNPlane id="_1">
 <bpmndi:BPMNShape id="_182647EF-1058-488D-9888-45945045C623"
bpmnElement="_75454980-4128-4083-95d7-0ef85b52ecba">
 <dc:Bounds x="90.7086614173228" y="226.771653543307" width="17.007874015748"
height="17.007874015748" xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"/>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNShape id="_126B2C02-E3E6-4E39-B9FF-2F33B3AA3004"
bpmnElement="_31f4992c-a912-4828-b67b-3c430d841189" isExpanded="false">
 <dc:Bounds x="128.976377952756" y="214.015748031496"

Chapter 17. The BPMNDI Graphical Model | 195

width="85.0393700787402" height="42.5196850393701"
xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"/>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNShape id="_614D8B4E-41C4-4055-9234-0601C778626F"
bpmnElement="_5d9f3cba-4787-4420-b1b3-c7666f8a837d">
 <dc:Bounds x="235.275590551181" y="226.771653543307" width="17.007874015748"
height="17.007874015748" xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"/>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNEdge id="_153BA773-386A-417A-83CC-729D21CAEFB7"
bpmnElement="_cf8bf2c6-c959-45f4-93e2-cdce3175850e" sourceElement="_75454980-4128-4083-95d7-
0ef85b52ecba" targetElement="_31f4992c-a912-4828-b67b-3c430d841189">
 <di:waypoint x="107.716535433071" y="228.188976377953"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"/>
 <di:waypoint x="128.976377952756" y="228.188976377953"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"/>
 </bpmndi:BPMNEdge>
 <bpmndi:BPMNEdge id="_FE03106D-C683-446A-8098-62E1C78F6D92"
bpmnElement="_8dadf786-45a3-4594-a56a-02375207afd8" sourceElement="_31f4992c-a912-4828-b67b-
3c430d841189" targetElement="_5d9f3cba-4787-4420-b1b3-c7666f8a837d">
 <di:waypoint x="214.015748031496" y="228.188976377953"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"/>
 <di:waypoint x="235.275590551181" y="228.188976377953"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"/>
 </bpmndi:BPMNEdge>
 <bpmndi:BPMNEdge id="_F56D4F86-0E68-4850-8B01-4CBEB99E2EEF"
bpmnElement="_8081ac38-cf1f-4114-9efe-3892f7c3e2db" sourceElement="_357f89aa-eb8f-4014-9548-
0928d47192a7" targetElement="_75454980-4128-4083-95d7-0ef85b52ecba">
 <di:waypoint x="106.299200433446" y="175.748031496063"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"/>
 <di:waypoint x="106.299203136775" y="226.771653543307"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"/>
 </bpmndi:BPMNEdge>
 <bpmndi:BPMNShape id="_6686DC43-2536-4761-8626-75633D08A530"
bpmnElement="_357f89aa-eb8f-4014-9548-0928d47192a7" isHorizontal="false">
 <dc:Bounds x="85.2698558897484" y="99.2125984251969"
width="254.887635238527" height="76.5354330708661"
xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"/>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNEdge id="_6686B787-328D-4A2A-9591-3374E546F057"
bpmnElement="_daf3f8e0-f6f5-491a-b04f-aa54caf62a39" sourceElement="_31f4992c-a912-4828-b67b-
3c430d841189" targetElement="_357f89aa-eb8f-4014-9548-0928d47192a7">
 <di:waypoint x="178.582681220347" y="214.015748031496"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"/>
 <di:waypoint x="178.582673110361" y="175.748031496063"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"/>
 </bpmndi:BPMNEdge>
 </bpmndi:BPMNPlane>
 </bpmndi:BPMNDiagram>
 <bpmndi:BPMNDiagram name="Process order (1)" resolution="72"
xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI">

196| Chapter 17. The BPMNDI Graphical Model

 <bpmndi:BPMNPlane id="_2" bpmnElement="_31f4992c-a912-4828-b67b-3c430d841189">
 <bpmndi:BPMNShape id="_E655BE81-98FE-43CE-AFA3-D2B6979C9117"
bpmnElement="_7883fbf8-a2c9-469f-8084-2bab5e877326">
 <dc:Bounds x="99.2125984251969" y="252.283464566929" width="17.007874015748"
height="17.007874015748" xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"/>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNShape id="_A665A671-D32B-4D77-B38C-BD1D1E070FC9"
bpmnElement="_88e44689-8fed-476a-b4bc-42e894c23fab">
 <dc:Bounds x="155.905511811024" y="239.527559055118"
width="85.0393700787402" height="42.5196850393701"
xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"/>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNShape id="_DF74DAE6-A83A-47F4-82D8-A8C86FE70CEB"
bpmnElement="_817bf4cf-4ede-407c-8624-da8dc56d78c4">
 <dc:Bounds x="280.629921259843" y="239.527559055118"
width="85.0393700787402" height="42.5196850393701"
xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"/>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNShape id="_C070AC5F-8CBF-4554-B705-C4092157AA28"
bpmnElement="_bd2d2300-de55-4aa0-baf3-f43398a36666">
 <dc:Bounds x="405.354330708661" y="239.527559055118"
width="85.0393700787402" height="42.5196850393701"
xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"/>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNShape id="_F7B71203-FF20-4EE5-801E-62568945CDB8"
bpmnElement="_da813ae8-7300-4d0c-8cb3-032a84f4d77f">
 <dc:Bounds x="511.653543307087" y="252.283464566929" width="17.007874015748"
height="17.007874015748" xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"/>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNEdge id="_DFC3ABB5-AF6F-496B-841E-7D3875A10AED"
bpmnElement="_f544e6ce-dbfe-4e01-a942-581ea7a76d17" sourceElement="_bd2d2300-de55-4aa0-baf3-
f43398a36666" targetElement="_da813ae8-7300-4d0c-8cb3-032a84f4d77f">
 <di:waypoint x="490.393700787402" y="253.700787401575"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"/>
 <di:waypoint x="511.653543307087" y="253.700787401575"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"/>
 </bpmndi:BPMNEdge>
 <bpmndi:BPMNEdge id="_F2B6D016-13A9-42C6-9AF0-BF3F47D4CC7B"
bpmnElement="_5c3838c3-1fa1-45b2-a4c6-a0f66d592f3f" sourceElement="_7883fbf8-a2c9-469f-8084-
2bab5e877326" targetElement="_88e44689-8fed-476a-b4bc-42e894c23fab">
 <di:waypoint x="116.220472440945" y="253.700787401575"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"/>
 <di:waypoint x="155.905511811024" y="253.700787401575"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"/>
 </bpmndi:BPMNEdge>
 <bpmndi:BPMNEdge id="_9681136E-B7EF-4F53-8441-24D921FE0034"
bpmnElement="_6a7a06bb-bb53-4861-818c-8bb0f7a2a942" sourceElement="_88e44689-8fed-476a-b4bc-
42e894c23fab" targetElement="_817bf4cf-4ede-407c-8624-da8dc56d78c4">
 <di:waypoint x="240.944881889764" y="253.700787401575"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"/>

Chapter 17. The BPMNDI Graphical Model | 197

 <di:waypoint x="280.629921259843" y="253.700787401575"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"/>
 </bpmndi:BPMNEdge>
 <bpmndi:BPMNEdge id="_EECB2D7E-44D3-498A-9E7C-F0D65C792C27"
bpmnElement="_fecb259c-2083-4d9f-919b-bec391354605" sourceElement="_817bf4cf-4ede-407c-8624-
da8dc56d78c4" targetElement="_bd2d2300-de55-4aa0-baf3-f43398a36666">
 <di:waypoint x="365.669291338583" y="253.700787401575"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"/>
 <di:waypoint x="405.354330708661" y="253.700787401575"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"/>
 </bpmndi:BPMNEdge>
 <bpmndi:BPMNEdge id="_19E735E6-DAB6-470C-8502-7A4790DB47FA"
bpmnElement="_36ae2e66-cbfe-451a-9a7b-52539da0702b" sourceElement="_bd2d2300-de55-4aa0-baf3-
f43398a36666" targetElement="_357f89aa-eb8f-4014-9548-0928d47192a7">
 <di:waypoint x="426.614173904179" y="239.527559055118"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"/>
 <di:waypoint x="426.614172552514" y="177.165354330709"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"/>
 </bpmndi:BPMNEdge>
 <bpmndi:BPMNShape id="_BFA2B743-E00A-46C7-BA20-8694F79E9742"
bpmnElement="_357f89aa-eb8f-4014-9548-0928d47192a7" isHorizontal="false">
 <dc:Bounds x="107.947032057394" y="96.3779527559055" width="420.71438526544"
height="80.7874015748032" xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"/>
 </bpmndi:BPMNShape>
 </bpmndi:BPMNPlane>
 </bpmndi:BPMNDiagram>
</definitions>

Figure 17-5. Serialization of simple hierarchical model, including BPMNDI

Here we’ve made the XML a bit less verbose by removing the tool-proprietary BPMNDI
attributes and by consolidating the namespace declarations in the BPMNDiagram elements.
Note the following points about Figure 17-5:

• There are two BPMNDiagram elements, signifying two pages.

• Both pages have resolution set to 72 pixels per inch. To convert location and size
coordinates to inches, divide the pixel values by 72.

• The BPMNPlane with id equal to _1 is a top-level page, because its bpmnElement points
to the collaboration element. The BPMNPlane with id equal to _2 is a child-level page
because its bpmnElement points to a subProcess element. Tools should populate the
attribute bpmnElement for all BPMNPlane elements.

• That subProcess shape is collapsed because its isExpanded value is false. All shapes
referencing subprocess-type elements should populate isExpanded. A subprocess-
type element referenced by a page (BPMNPlane) should always be collapsed. When
isExpanded is true, both parent and child-level semantic elements should be displayed
on the same page.

198| Chapter 17. The BPMNDI Graphical Model

• There are two participant elements in the semantic model, but only one of them –
Customer – is referenced by a pool shape in BPMNDI. Not all semantic elements have
a corresponding shape in BPMNDI.

• Two shapes, one on each page, point to the same participant, the one named Customer,
indicating pool shapes. The participant has no processRef, so it is a black-box pool.
The tool I used to create Figure 17-3 and Figure 17-4 allowed me to indicate that both
Customer pool shapes reference the same participant element; it did not simply assume
that because their names are the same (although that would not be a bad idea).

• Both pool shapes have isHorizontal set to true. Tools should set the value of this
attribute for pool and lane shapes.

199

CHAPTER 18

18. BPMN-I

Interchange of process models was an explicit goal of BPMN 2.0, but as of this writing it has
not yet been realized in practice. Unfortunately, XML serialization in accordance with all the
rules of the BPMN 2.0 XSD, metamodel, and spec narrative still allows enough variation to
make interoperation between tools difficult. Even if we limit the problem to interchange of
models containing only the elements and attributes in the Analytic subclass – that is, non-
executable Level 2 models, including only information visible in the diagram – the BPMN 2.0
spec does not guarantee a unique serialization. In practice, additional conventions and
validation checks are needed to facilitate model interchange.

Ideally, such detailed rules for model interchange should be part of the BPMN specification.
But they are not there today, and they are unlikely to be added anytime soon, for several
reasons:

• It took over three years to complete BPMN 2.0, and a full year after finalization, tool
vendors are only now beginning to implement the final standard. A new version of
the standard would take a couple years more, at least.

• The current specification does not even include a consolidated list of its existing
semantic rules. That would be required before adding any new validation checks to
the standard.

• The main focus of the BPMN technical committee in OMG has been (and, I believe,
remains) execution semantics, not the non-executable models of the Analytic
subclass.

• The consensus-driven OMG standards process is unlikely ever to constrain tools
sufficiently to ensure BPMN model interchange. I suspect many tool vendors
secretly prefer that interchange with other tools is not an easy thing to do. The real
beneficiaries of model interchange are end users, and they have little influence over
the standards.

For these reasons, I am tackling the issue myself. I call the initiative BPMN-I, in analogy with
WS-I, a successful grass-roots effort to promote interoperability of web services by defining a

200| Chapter 18. BPMN-I

Basic Profile, constraints on implementations beyond those of the official web service
standards. While WS-I is concerned with runtime interoperability, BPMN-I takes on a much
easier problem: design-time interchange of non-executable BPMN models, using only the
elements and attributes in the Analytic subclass. I invite BPMN implementers of all types to
collaborate with me in the effort.23

The guiding principle of BPMN-I is this: Any BPMN model conforming to the Analytic subclass
should have one and only one XML serialization. That requires imposing additional constraints
on the serialization beyond those of the BPMN 2.0 spec. I call that set of constraints the
BPMN-I Profile.

A key lesson from my experience in BPMN training is that getting modelers to conform to
best practice conventions works best when those conventions can be reduced to rules that are
validated in a tool. Simply publishing a list of rules is not nearly as effective as implementing
those rules in a tool. I have created such a tool for the BPMN-I profile using XSLT 2.0 and I
am making it available for implementers to use24. The evolution of Method and Style from
“best practices” to rules implemented in the itp commerce modeling tool has made a huge
difference in the quality of student models in my BPMN training, and I expect that BPMN-I
validation in a tool will similarly accelerate the implementation of interoperable BPMN by
tool vendors.

The BPMN-I Profile is a work in progress. Ultimately, its success is dependent on
participation and adoption by implementers such as you. If successful, I believe it will
eventually be incorporated in some fashion in a future version of the official BPMN standard,
just as Level 1 and Level 2 of Method and Style became the Descriptive and Analytic
subclasses in BPMN 2.0.

The BPMN-I Profile is primarily a set of rules governing the export of BPMN 2.0-compliant
XML from tools. The XML serialization of a BPMN 2.0 model can be verified against the
BPMN-I Profile using my validation tool, which reports specific violations. Violation of a
BPMN-I Profile rule does not mean the model violates any rules of the BPMN spec, only that it may
not be interoperable with other tools claiming to be BPMN-I compliant.

The purpose of the BPMN-I Profile is to allow modelers to determine in advance Tool B’s
ability to import and understand a BPMN model created by Tool A. A BPMN tool may assert
the ability to import BPMN-I-compliant XML, possibly with specific exceptions. The complete
BPMN-I profile includes all elements and attributes of the Analytic subclass, import of external
BPMN files and remote QName references, hierarchical modeling, and BPMNDI. However, I
know of no BPMN tool today that does it all and conforms to all the BPMN-I serialization
constraints.

23 Contact bruce@brsilver.com.

24 For more information, go to www.bpmnstyle.com.

Chapter 18. BPMN-I | 201

BPMN-I Profile Serialization Rules
The BPMN-I serialization rules apply to the BPMN 2.0 XML export of any model in the
Analytic subclass. Many of the rules concern elements and attributes populated by the
exporting tool, independent of the diagram created by the modeler. However, some rules
effectively constrain the actions of modelers themselves, in the sense that certain diagrams
that can be drawn in the tool cannot be serialized unambiguously or in a way that is
interoperable with other tools. BPMN-I thus implies that tools should apply certain validation
checks prior to export and warn modelers when the diagram cannot be serialized in accordance with the
BPMN-I Profile.

The term BPMN model is understood to include multiple BPMN files linked by one or more
import elements. In that case, one of the BPMN files is considered the top-level BPMN file for
the model. My BPMN-I Profile validation tool applies an XSLT 2.0 transform to the top-level
BPMN file to generate the error report.

In the list of rules that follows, attributes and child elements are identified using XPATH
syntax, in which A/B means child element B of A, and A/@B means attribute B of A. The rule
numbers in brackets correspond to violations reported by the tool.

Schema Validation
• [R0001] As a prerequisite, all BPMN files in the model must be valid per the final

BPMN 2.0 XSD (http://www.omg.org/spec/BPMN/20100501/BPMN20.xsd). In addition
to verifying presence in the BPMN file and correct document order of required
elements and attributes, schema validation checks the uniqueness of all attributes of
type xsd:ID and validates the presence of elements referenced by attributes and
elements of type xsd:IDREF.

• [R0003] The BPMN model must include at least one process or collaboration element.

definitions
• [R0004] The targetNamespace of any BPMN file in the model may not be the BPMN 2.0

namespace.

• [R0005] definitions/@exporter must be populated in every BPMN file in the model.
The value should be the name of the tool creating the serialization.

• [R0006] definitions/@exportVersion must be populated in every BPMN file in the
model. The value should be the detailed version number, equivalent to that found in
the Help/About dialog of the exporting tool.

import
• [R0002] A BPMN file referenced by import must be available from the specified

location.

202| Chapter 18. BPMN-I

Non-Standard Elements and Attributes
• [R0007] Model elements not defined by the BPMN 2.0 XSD must be in a declared

namespace other than either the BPMN 2.0 namespace or the targetNamespace of any
BPMN file in the model.

• [R0008] Model elements not defined by the BPMN 2.0 XSD must be enclosed in an
extensionElements tag.

• [R0009] Model attributes not defined by the BPMN 2.0 XSD must be in a declared
namespace other than the BPMN 2,0 namespace or the targetNamespace of any BPMN
file in the model.

Remote Element References
Schema validation ensures the presence of local (IDREF) references, but does not ensure the
presence of elements targeted by BPMN 2.0 remote references of type xsd:QName. BPMN-I
validation ensures the presence of remote QName references, according to the following
rules:

• If the remote reference does not contain a colon, the targetNamespace of the
referencing and referenced elements must be the same, and an element with id
matching the remote reference string value must exist in the model.

• If the remote reference contains a colon, the namespace corresponding to the prefix
must be declared in the context of the referencing element and must match the
targetNamespace of the referenced element. In addition, the string following the colon
must match the id of the referenced element.

The following members of the Analytic subclass are QName remote references subject to
“Element not found” errors in BPMN-I validation:

• flowNode/@default [flowNode stands for any activity, gateway, or event element.]

• callActivity/@calledElement

• boundaryEvent/@attachedToRef

• participant/@processRef

• messageFlow/@sourceRef

• messageFlow/@targetRef

• messageFlow/@messageRef

• bpmndi:BPMNPlane/@bpmnElement

• bpmndi:BPMNShape/@bpmnElement

• bpmndi:BPMNEdge/@bpmnElement

Chapter 18. BPMN-I | 203

Page Structure
Each page in the graphical model is represented by a separate BPMNDiagram element and its
child BPMNPlane. The page structure of a BPMN model is specified by the bpmnElement
attribute of BPMNPlane. If a BPMNPlane references a subprocess-type element, it is a child-
level page. Otherwise it is a top-level page.

Link event pairs used as off-page connectors, while allowed by the BPMN 2.0 spec, are not
supported by BPMN-I.

• [R9001] A BPMNPlane must contain at least one BPMNShape. For example, a Visio
page that contains only explanatory documentation should not be exported as a
BPMNDiagram in the BPMN graphical model.

• [R9002] A BPMNDiagram must have a name. This attribute should hold the name or
title of the page created in the BPMN tool.

• [R9003] A BPMNDiagram must specify a resolution, in pixels per inch.

• [R9004] A BPMNPlane must have an id. In the XSD, both BPMNDiagram and
BPMNPlane have id attributes, but in BPMN-I BPMNPlane/@id is used to identify the
page.

• [R9005] BPMNPlane/@bpmnElement must point to a subProcess, callActivity, process, or
collaboration element. (transaction and adHocSubProcess are outside the Analytic
subclass and should not appear in models conformant with the BPMN-I Profile.)

• [R9006] If BPMNPlane/@bpmnElement references a collaboration, the page may contain
flowElements of more than one process; if it references a process, the page may contain
flowElements of only that process. In either case, this BPMNPlane signifies a top-level
page.

• [R9007] If BPMNPlane/@bpmnElement references a collaboration, flowElements of at
most one process on that page may be unenclosed by a pool shape.

• [R9008] If BPMNPlane/@bpmnElement references a subProcess or callActivity, all
flowElements on that page must be children of the referenced subProcess or callActivity.
In this case the BPMNPlane signifies a child-level page.

• [R9009] If BPMNPlane/@bpmnElement references a subProcess or callActivity, the
BPMNShape referencing that subProcess or callActivity must have attribute isExpanded
equal to false.

• [R9010] All flowElements in a process level must be displayed on the same page. Link
pair off-page connectors are not supported by the BPMN-I Profile.

• [R9011] BPMNLabelStyle, child element of BPMNDiagram, is not supported by
BPMN-I and should not be included in any model conformant with the BPMN-I
Profile.

204| Chapter 18. BPMN-I

participant and Pool
A pool is, by definition, any BPMNShape that points to a participant in the semantic model. The
pool label corresponds to participant/@name.

• [R3001] A model may not contain two or more participants in the same
targetNamespace with the same name. This can occur when two or more pages in the
model have pools with the same label, but the tool does not recognize that they
reference the same semantic element.

• [R3002] participant/@processRef, if present, must point to a process element in the
model.

• [R3003] A participant element is required for every process that sends or receives a
messageFlow, whether or not flowElements of the process are enclosed in a pool.

• [R9031] If a flowNode's process has a pool shape on the page, the flowNode shape must
be enclosed within the pool boundary. In other words, all flowNodes in the process
must be drawn inside the pool shape.

• [R9120] A pool shape may not overlap with another pool shape. In particular, a pool
may not be nested inside another pool.

• [R9121] A black-box pool shape may not contain or overlap any flowNode shapes. It
should be completely empty. A black-box pool is a BPMNShape whose bpmnElement
points to a participant that has no @processRef.

• [R9122] A black-box pool may not contain or overlap any lane shapes.

• [R9123] All of the flowNode shapes contained in a pool must point to semantic
flowNodes belonging to the participant’s referenced process. In other words, one
process’s pool may not enclose a flowNode of another process.

• [R9124] A pool shape must populate Boolean attribute isHorizontal. A value of true
means the pool extends the width of the diagram with label on the left edge; a value
of false means the pool extends top to bottom with label on the top edge.

collaboration
• [R0500] A collaboration must contain at least one participant.

• [R0501] collaboration attributes other than id and name are not supported by BPMN-I
and should not appear in models conforming to the BPMN-I Profile.

• [R0502] collaboration child elements other than documentation, extensionElements,
participant, messageFlow, association, group, and textAnnotation are not supported by
BPMN-I and should not appear in models conforming to the BPMN-I Profile.

Chapter 18. BPMN-I | 205

process
• [R1001] A process must contain at least one activity. Some tools always create a

“main process” but leave it empty if the modeler encloses flowElements in a pool.
That would be a BPMN-I Profile violation.

• [R1002] A process must have a name. Note: there is no BPMNShape/@bpmnElement
that points to a process, so process/@name may be invisible in the diagram. Method
and Style recommends populating process/@name with participant/@name (the pool
label).

• [R1003] The process name must not be the same as the name of any subProcess or
callActivity contained in the process.

• [R1004] process/@processType must be omitted or None.

• [R1005] process/@isExecutable must be omitted or false. The BPMN-I Profile applies to
non-executable BPMN only.

• [R1006] A process must contain at least one startEvent.

• [R1007] A process must contain at least one endEvent.

• [R1008] Two process elements in the same targetNamespace must not have the same
name.

laneSet and lane
• [R1102] If a laneSet is used in a process level, the node-set laneSet/lane/@flowNodeRef

must include pointers to all flowNode elements in that process level. In other words, if
a process level uses lanes, all its flowNodes must be referenced by one lane or another
in the semantic model.

• [R1103] lane/@flowNodeRef must point to a flowNode, i.e., an activity, gateway, or
event. Sequence flows, data objects, and text annotations are not valid targets of
flowNodeRef.

• [R1101] The shapes representing all of the lanes in a laneset must be displayed on the
same page.

• [R9130] A lane shape should populate Boolean attribute isHorizontal.

• [R9131] A lane shape may not extend beyond its enclosing pool.

• [R9132] A lane shape should extend the full length of its enclosing pool. This is a
requirement of the BPMN spec, but there is ambiguity concerning the dc:Bounds
values for the top left corner of a lane shape. BPMN-I resolves the ambiguity. For
horizontal pools, BPMN-I requires the lane shape’s dc:Bounds/@x value to be the same
as that of the pool shape. However, some BPMN tools put the top left corner of the
lane to the right of the pool label box. BPMNDI provides nothing to specify the size of

206| Chapter 18. BPMN-I

the pool label box, however. To repeat, in BPMN-I the dc:Bounds/@x value of
horizontal lane and pool shapes should be the same.

flowNode
The flowNode abstract class includes activity, gateway, and event elements. The following
BPMN-I rules pertain to all flowNodes:

• [R1200] Only flowNodes in the Analytic subclass are allowed in models conforming to
the BPMN-I Profile. These include task, userTask, serviceTask, sendTask, receiveTask,
callActivity, subProcess [@triggeredByEvent=false()], exclusiveGateway, inclusiveGateway,
eventBasedGateway, startEvent, intermediateThrowEvent, intermediateCatchEvent,
boundaryEvent, and endEvent.

• [R1201] Any flowNode in the Analytic subclass other than startEvent , boundaryEvent,
catching Link event, or child of a “parallel box” subProcess should have incoming
sequence flow.

• [R1202] Any flowNode in the Analytic subclass other than endEvent, throwing Link
event, or child of a “parallel box” subProcess should have outgoing sequence flow.

• [R1203] flowNode/incoming and flowNode/outgoing should be omitted from the
serialization. These elements are not in the Analytic subclass, and are redundant to
sequenceFlow/@sourceRef and sequenceFlow/@targetRef.

• [R1204] The only flowNodes that may have attribute default are activity elements, plus
exclusiveGateway and inclusiveGateway.

• [R1209] flowNode/@default must point to a sequenceFlow outgoing from the flowNode.

activity
• [R1300] Only activity elements in the Analytic subclass are allowed in models

conforming to the BPMN-I profile. These include task, userTask, serviceTask, sendTask,
receiveTask, callActivity, and subProcess [@triggeredByEvent=false()].

• [R1301] An activity should have a name, displayed as the label of the activity shape.

• [R1302] activity/startQuantity and activity/completionQuantity should be omitted from
the serialization, implying the default value of 1 for both. These elements are not in
the Analytic subclass.

• [R1303] Compensating activities (activity[@isForCompensation = true()]) are not part of
the Analytic subclass and not allowed by BPMN-I Profile.

• [R1330] callActivity/@calledElement must point to either a process or global task.

Chapter 18. BPMN-I | 207

startEvent
• [R1500] Only startEvents in the Analytic subclass are allowed in models conforming

to the BPMN-I Profile. These include those with either no eventDefinition child or
child element messageEventDefinition, timerEventDefinition, signalEventDefinition, or
conditionalEventDefinition. A startEvent may have more than one of these child
elements, but may not have attribute @parallelMultiple = true(). In other words, the
Multiple start event is allowed but not the Parallel-Multiple start event.

• [R1501] A startEvent may not have incoming sequence flow. The legacy construct
allowing start events on the boundary of an expanded subprocess is specifically
excluded by the BPMN-I Profile.

• [R1502] A startEvent may not have outgoing message flow.

• [R1503] A startEvent with incoming message flow must have child
messageEventDefinition.

• [R1505] A startEvent in a subProcess (not an event subprocess) must have None trigger,
i.e., must have no child eventDefinition elements.

• [R1506] Attribute startEvent/@isInterrupting is not part of the Analytic subclass and
should be omitted from models conforming to the BPMN-I Profile. It is only used in
event subprocesses, which are not part of the Analytic subclass.

boundaryEvent
• [R1600] Only boundaryEvents in the Analytic subclass are allowed in models

conforming to the BPMN-I profile. These include only those with child element
messageEventDefinition, timerEventDefinition, errorEventDefinition,
escalationEventDefinition, conditionalEventDefinition, or signalEventDefinition. A
boundaryEvent must have at least one of these child elements, but may not have
attribute @parallelMultiple = true(). In other words, the Multiple boundary event is
allowed but not the Parallel-Multiple boundary event.

• [R1619] Attribute attachedToRef must point to an activity in the same process level.

• [R1620] A boundaryEvent must have exactly one outgoing sequenceFlow.

• [R1622] A boundaryEvent may not have incoming sequenceFlow.

• [R1623] An Error boundaryEvent on a subProcess requires matching Error endEvent in
the child-level expansion, unless the subProcess contains no child elements.

• [R1624] An Error boundaryEvent may not be non-interrupting, i.e., may not have
@cancelActivity=false().

• [R1630] An Escalation boundaryEvent on a subProcess requires matching Escalation
intermediateThrowEvent or endEvent in the child-level expansion, unless the subProcess
contains no child elements.

208| Chapter 18. BPMN-I

intermediateCatchEvent and intermediateThrowEvent
• [R1700] Only intermediateThrowEvents in the Analytic subclass are allowed in models

conforming to the BPMN-I Profile. These include only those either with no
eventDefinition, or with child element messageEventDefinition, signalEventDefinition,
escalationEventDefinition, or linkEventDefinition.

• [R1701] Only intermediateCatchEvents in the Analytic subclass are allowed in models
conforming to the BPMN-I Profile. These include only those with child element
messageEventDefinition, timerEventDefinition, signalEventDefinition,
conditionalEventDefinition, or linkEventDefinition.

• [R1744] A Link intermediateThrowEvent may not have outgoing sequence flow.

• [R1745] The target of a Link intermediateThrowEvent must be a Link
intermediateCatchEvent in the same process level. Because of a bug in the BPMN 2.0
XSD, the target is NOT identified by the optional child linkEventDefinition/target, but
instead by the required attribute linkEventDefinition/@name. Although this attribute is
type xsd:string in the XSD, BPMN-I requires its value to be a pointer to the id of the
target intermediateCatchEvent element.

• [R1746] A Link intermediateCatchEvent may not have incoming sequence flow.

• [R1747] The source of a Link intermediateCatchEvent must be a Link
intermediateThrowEvent in the same process level. Because of a bug in the BPMN 2.0
XSD, the source is NOT identified by the optional child linkEventDefinition/source, but
instead by the required attribute linkEventDefinition/@name. Although this attribute is
type xsd:string in the XSD, BPMN-I requires its value to be a pointer to the id of the
source intermediateThrowEvent element.

endEvent
• [R1800] Only endEvents in the Analytic subclass are allowed in models conforming to

the BPMN-I Profile. These include only those with child element
messageEventDefinition, terminateEventDefinition, errorEventDefinition,
signalEventDefinition, or escalationEventDefinition, or no child in the eventDefinition
class. An endEvent may have more than one of these child elements.

• [R1850] An endEvent may not have outgoing sequence flow.

• [R1851] An endEvent may not have incoming message flow.

• [R1852] An endEvent with outgoing message flow must have child
messageEventDefinition.

Chapter 18. BPMN-I | 209

Gateway
• [R1900] Only gateway elements in the Analytic subclass are allowed in models

conforming to the BPMN-I Profile. These include exclusiveGateway, inclusiveGateway,
eventBasedGateway, and parallelGateway only.

• [R1901] Attribute gatewayDirection is not in the Analytic subclass and should be
omitted from the serialization.

• [R1902] Attribute default on exclusiveGateway or inclusiveGateway must point to a
sequence flow outgoing from the gateway.

• [R1903] On eventBasedGateway, attribute instantiate is not part of the Analytic subclass
and is not allowed in models conforming to the BPMN-I Profile. (The default
behavior corresponds to the value false().)

• [R1904] On eventBasedGateway, attribute eventGatewayType is not part of the Analytic
subclass and is not allowed in models conforming to the BPMN-I Profile. (The default
behavior corresponds to the value Exclusive.)

• [R1960] A gateway may not have incoming message flow.

• [R1961] A gateway may not have outgoing message flow.

• [R1962] A gateway may not have one incoming and one outgoing sequence flow.

• [R1965] Each gate of an eventBasedGateway must be either an intermediateCatchEvent
or a receiveTask.

sequenceFlow
• [R2000] sequenceFlow/@sourceRef must point to a flowNode in the same process level.

• [R2001] sequenceFlow/@targetRef must point to a flowNode in the same process level.

• [R2002] Attribute isImmediate is not part of the Analytic subclass and should be
omitted from models conforming to the BPMN-I Profile.

• [R2003] sourceRef and targetRef values may not be the same; a sequence flow may not
connect a flowNode to itself.

• [R2004] If a flowNode has only one outgoing sequenceFlow, the sequenceFlow must be
unconditional, i.e., it may not have child element conditionExpression.

• [R2005] If sequenceFlow/@sourceRef points to parallelGateway or eventBasedGateway, the
sequenceFlow must be unconditional, i.e., it may not have child element
conditionExpression.

• [R2006] If sequenceFlow has child conditionExpression, the sequenceFlow may not be
referenced by the default attribute of an activity or gateway.

210| Chapter 18. BPMN-I

• [R2007] If sequenceFlow/@sourceRef points to exclusiveGateway or inclusiveGateway, it
should have child element conditionExpression, unless it is the gateway default flow. In
non-executable BPMN, conditionExpression is usually an empty element. The label of
the sequenceFlow connector is the sequenceFlow/@name, not the content of
conditionExpression.

messageFlow
• [R3102] messageFlow attributes source and target may not point to elements in the same

process.

• [R3103] messageFlow/@source must point to an activity, intermediateThrowEvent with
child messageEventDefinition, endEvent with child messageEventDefinition, or a black-
box pool (participant[not(@processRef)]).

• [R3104] messageFlow/@target must point to an activity, intermediateCatchEvent with
child messageEventDefinition, boundaryEvent with child messageEventDefinition,
startEvent with child messageEventDefinition, or a black-box pool
(participant[not(@processRef)]).

• [R3105] messageFlow/@messageRef, if present, must point to a message element in the
model.

textAnnotation and association
A textAnnotation is an artifact. In the serialization it is a child of either a collaboration or a
process element. A textAnnotation is usually linked to a flowElement via an association
connector, but the spec does not require it. If the association is present, the node at the other
end determines the parent element. If textAnnotation is “floating” with no association, the
bpmnElement attribute of the page (BPMNPlane) on which it appears points to the parent
element of the textAnnotation. If bpmnElement points to a subprocess-type element, the process
to which that element belongs is the parent of textAnnotation.

• [R4001] If a textAnnotation is linked to a flowElement via association, the parent of the
textAnnotation must be the process to which the flowElement belongs.

• [R4002] If a textAnnotation is linked to a participant or messageFlow via association, the
parent of the textAnnotation must be the collaboration to which the participant or
messageFlow belongs.

• [R4003] If a textAnnotation is not connected to an association and is drawn on a top-
level page, the parent of the textAnnotation must be the process or collaboration
referenced by bpmndi:BPMNPlane/@bpmnElement.

• [R4004] If a textAnnotation is not connected to an association and is drawn on a child-
level page, the parent of the textAnnotation must be the process parent of the
subprocess-type element referenced by bpmndi:BPMNPlane/@bpmnElement.

Chapter 18. BPMN-I | 211

• [R4005] An association connecting to a textAnnotation must be non-directional, i.e.,
attribute associationDirection must be either omitted or None.

group
Like textAnnotation, group is an artifact that belongs either to a process or a collaboration.

• [R4500] If a group is drawn on a top-level page, its parent is the process or collaboration
element referenced by bpmndi:BPMNPlane/@bpmnElement.

• [R4501] If a group is drawn on a child-level page, its parent is the process containing
the subprocess-type element referenced by BPMNPlane/@bpmnElement.

• [R4502] Attribute categoryValueRef is not supported by BPMN-I and should not
appear in any model conformant to the BPMN-I Profile.

Data Flow
• [R5001] A dataObject element is allowed by the BPMN-I Profile only if a data object

shape pointing to it exists in the graphical model.

• [R5002] Only dataObject attributes in the Analytic subclass are allowed in models
conforming to the BPMN-I Profile. These include id and name.

• [R5003] A dataStoreReference element is allowed by the BPMN-I Profile only if a data
store shape pointing to it exists in the graphical model.

• [R5004] Only dataStoreReference attributes in the Analytic subclass are allowed in
models conforming to the BPMN-I Profile. These include id, name, and dataStoreRef.

• [R5005] dataStoreReference/@dataStoreRef must point to a dataStore element.

• [R5006] A dataObject or dataStoreReference must be the sourceRef of a
dataInputAssociation or the targetRef of a dataOutputAssociation, or both. It may not be
“unattached”.

• [R5007] The sourceRef of a dataInputAssociation may only be a dataObject or
dataStoreReference.

• [R5008] The targetRef of a dataInputAssociation may only be a dataInput.

• [R5009] The sourceRef of a dataOutputAssociation may only be a dataOutput.

• [R5010] The targetRef of a dataOutputAssociation may only be a dataObject or
dataStoreReference.

BPMNShape
• [R9030] A BPMNShape must have attribute bpmnElement that points to a semantic

element in the model.

212| Chapter 18. BPMN-I

• [R9101] A BPMNShape must have an id.

• [R9102] A BPMNShape may not reference a process. A pool shape must reference a
participant.

• [R9103] A BPMNShape referencing a subProcess or callActivity must populate attribute
isExpanded. No other shape may have this attribute.

• [R9104] A BPMNShape referencing a participant (pool) or lane must populate attribute
isHorizontal. No other shape may have this attribute.

• [R9105] BPMNShape/@isMarkerVisible applies only to exclusiveGateway. No other
shape may have this attribute.

• [R9106] BPMNShape/@isMessageVisible applies only to message. No other shape may
have this attribute.

• [R9107] BPMNShape/dc:Bounds/@x and dc:Bounds/@y values may not be negative.

• [R9108] BPMNShape/dc:Bounds/@height and dc:Bounds/@width values may not be
negative.

• [R9109] BPMNShape child bpmndi:BPMNLabel is not supported by BPMN-I and
should not appear in any model conformant with the BPMN-I Profile.

BPMNEdge
BPMNEdge is the graphical representation of sequence flow, message flow, association, and
data association elements. Child elements di:waypoint are an ordered list of coordinates
representing the connector source, bendpoints, and target location.

• [R9050] A BPMNEdge must have attribute bpmnElement that points to a semantic
connector element in the model.

• [R9051] A BPMNEdge must have an id.

• [R9052] BPMNEdge attributes sourceElement, targetElement, and messageVisibleKind
and child element BPMNLabel are not supported by BPMN-I and should not appear
in any model conformant with the BPMN-I Profile.

• [R9053] The first di:waypoint of a BPMNEdge should lie on or within the bounding
box of the BPMNShape for the element referenced by the semantic connector’s
sourceRef.

• [R9054] The last di:waypoint of a BPMNEdge should lie on or within the bounding box
of the BPMNShape for the element referenced by the semantic connector’s targetRef.

213

 PA RT V:
BPMN IM P L E M E N T E R’S GU I D E –

EX EC U TA B L E BPMN

215

CHAPTER 19

19. What Is Executable BPMN?

Up to this point in the book, we have focused on non-executable BPMN, in which the process
diagram describes the process logic in a human-understandable way. The primary emphasis
is on the diagram, the visual representation of the process logic. The XML serialization serves
primarily the purpose of model interchange between tools as well as to make the semantics
more precise. However, most of the effort in developing the BPMN 2.0 specification involved
elements related to executable processes. In an executable process, a software engine automates
the flow of model execution from process instantiation to completion. This requires
additional details to be specified for each BPMN element, including:

• Process variables
• Task input and output data, and their mappings to variables
• Task user interface forms and screenflows
• Task performer assignment logic
• Conditional expressions
• Event definitions
• Messages

These details are invisible in the diagram, but BPMN 2.0 provides XML elements to specify
them.

BPMN 1.x-based BPM Suites have been available from numerous vendors for several years.
They support execution of process logic defined in BPMN, but they are not what we mean
here by executable BPMN. The reason is that while the process logic in those tools may
follow the semantics and rules of BPMN, the execution-related details listed above are
specified by each tool in a proprietary manner. Standardization of these execution-related
details was an explicit objective of BPMN 2.0.

That does not mean, however, that BPMN 2.0 is a process execution language like BPEL, in
which the language may be executed directly on the process engine. Some vendors may
implement such an engine, but I expect executable BPMN 2.0 to serve primarily as an
interchange format. Internally, each tool has its own proprietary object model, but will be able

216 | Chapter 19. What Is Executable BPMN?

to export execution-related details using BPMN 2.0 XML, and ideally import them as well.
Thus, in the context of this book, the term “executable BPMN” refers to a tool’s ability to
specify and export execution-related details, such as those listed above, consistent with the
BPMN 2.0 metamodel and schema.

Common Executable Subclass
In addition to the Analytic and Descriptive subclasses for non-executable BPMN, the BPMN
2.0 spec enumerates the elements and attributes supported for basic executable BPMN, called
the Common Executable subclass. In terms of the shapes and symbols included, Common
Executable is close to the Descriptive subclass, but it includes additional child elements and
attributes to specify the executable details. The Common Executable subclass requires
support of XML Schema as the type definition language, WSDL as the definition language for
service interfaces, and XPath as the language for referencing data elements.

Element Attributes
sequenceFlow id, name, sourceRef, targetRef, conditionExpression, default
exclusiveGateway id, name, gatewayDirection, default
parallelGateway id, name, gatewayDirection
eventBasedGateway Id, name, gatewayDirection, eventGatewayType
userTask id, name, rendering, implementation, resource, ioSpecification,

dataInputAssociation, dataOutputAssociation, loopCharacteristics,
boundaryEventRefs

serviceTask id, name, implementation, operationRef, ioSpecification,
dataInputAssociation, dataOutputAssociation, loopCharacteristics,
boundaryEventRefs

subProcess id, name, flowElement, loopCharacteristics, boundaryEventRefs
callActivity id, name, calledElement, ioSpecification, dataInputAssociation,

dataOutputAssociation, loopCharacteristics, boundaryEventRefs
dataObject id, name, isCollection, itemSubjectRef
textAnnotation id, text
dataAssociation id, name, sourceRef, targetRef, assignment
startEvent (None) id, name
endEvent (None) id, name
Message startEvent id, name, messageEventDefinition (ref or contained), dataOutput,

dataOutputAssociation
Message endEvent id, name, messageEventDefinition (ref or contained), dataInput,

dataInputAssociation
Terminate endEvent id, name, terminateEventDefinition
Message
intermediateCatchEvent

id, name, messageEventDefinition, dataOutput, dataOutputAssociation

Message
intermediateThrowEvent

id, name, messageEventDefinition, dataInput, dataInputAssociation

Timer
intermediateCatchEvent

id, name, timerEventDefinition

Error boundaryEvent id, name, attachedToRef, errorEventDefinition, dataOutput,
dataOutputAssociation

Figure 19-1. Common Executable Process Modeling Conformance subclass

 Chapter 19. What Is Executable BPMN? | 217

The Common Executable subclass includes also the following supporting elements:

Element Attributes
standardLoopCharacteristics id, loopCondition
multiInstanceLoopCharacteristics id, isSequential, loopDataInput, inputDataItem
rendering
resource id, name
resourceRole id, resourceRef, resourceAssignmentExpression
ioSpecification id, dataInput, dataOutput
dataInput id, name, isCollection, itemSubjectRef
dataOutput id, name, isCollection, itemSubjectRef
itemDefinition id, structure (complexType) or import
operation id, name, inMessageRef, outMessageRef, errorRef
message id, name, structureRef
error id, structureRef
assignment id, from, to (complexType)
messageEventDefinition id, messageRef, operationRef
terminateEventDefinition id
timerEventDefinition id, timeDate

Figure 19-2. Common Executable subclass, supporting elements

Note several basic elements from the Descriptive subclass are missing in Common Executable,
including pool, lane, messageFlow, and dataStore. This is consistent with the fact that few BPM
Suites today support collaboration diagrams in their BPMN tools. Also, the only
boundaryEvent supported by Common Executable is Error, and this is presumably on a task
only, since Error endEvent is not included in the subclass. I believe that timerEventDefinition
child timeDuration was omitted inadvertently and should be added to the subclass. Still, it is
clear that the Common Executable subclass supports only the barest minimum of exception
handling. Nevertheless, it provides all the elements necessary to specify a basic executable
process. We will look at how to do that in the next few chapters.

219

CHAPTER 20

20. Variables and Data Mapping

Serialization of data flow in non-executable models was discussed in Chapter 16. Those
models, however, lacked any formal definition of data elements, expressions, and mappings.
Process data is at the core of executable BPMN. In this chapter we see how such details are
defined in BPMN 2.0.

Below is a brief overview:

1. Process data elements reference their definitions by pointing to an itemDefinition
element, which in turn points to an element or complex type defined externally to the
BPMN document and imported by it. Support for import of XSD and WSDL files is
required by the Common Executable subclass. It is also allowed to define datatypes
internally to the BPMN document as XSD complex types and reference them by
QName from the structureRef attribute of itemDefinition.

2. Data objects represent process variables managed by the process engine. A data object
is accessible only within the process level in which it is defined and its child process
levels. Its lifetime is limited to the active time of the process or subprocess in which it
is defined. When that process or subprocess is complete, the data object is no longer
accessible.

3. Activity dataInputs and dataOutputs, interface parameters defined by the activity’s
ioSpecification element, are mapped to data objects by data associations. The mapping
details are specified within the BPMN using assignment or transformation. It is also
possible to use Script tasks to implement complex data mapping.

4. Events with associated itemDefinition, including Message, Signal, Error, and
Escalation, also may have data associations that store or populate event data.
Catching events have dataOutputAssociation only, and throwing events have
dataInputAssociation only.

Now let’s take a deeper look.

220 | Chapter 20. Variables and Data Mapping

itemDefinition
In non-executable BPMN, process data is described simply by the name of a dataObject or
dataStore element. In executable BPMN, or even in BPMN used to describe business
requirements for implementation, more detailed data description is needed, and BPMN 2.0
supports this through the itemDefinition element. All item-aware elements have an attribute
itemSubjectRef that points to an itemDefinition. itemDefinition is a root element and may be
referenced by any item-aware element in the model.

Note that the name of the data element is an attribute of the item-aware element, not of the
itemDefinition.

BPMN does not provide its own data definition language. Data structures are assumed to be
defined externally, using standard data definition languages and tools, and imported into the
BPMN model. The typeLanguage attribute of the root definitions element specifies the default
type language for all itemDefinitions; if omitted, the XSD type language is assumed.

Here again the specification confuses matters with a bug. The metamodel (Figure 8.25 and
Table 8.47 in the spec) gives itemDefinition an additional attribute, import, a pointer to a root
import element in the model. This attribute is not present in the XSD, however, and so we
may not use it in the serialization. We don’t really need it since the imported schema element
name must be unique in its namespace.

Attributes of itemDefinition include:

• id, the target of the itemSubjectRef of an item-aware element.

• isCollection, a Boolean (default false) indicating a collection of data elements. A
dataObject referencing an itemDefinition must have the same value of isCollection.

• itemKind, an enumerated value (information or physical, default information) indicating
data or a physical item.

• structureRef, a QName pointer to the data structure, which must be a single element
or complex type in the specified typeLanguage. If XSD (the default) is the
typeLanguage, structureRef typically points to an element or complex type in an
imported XSD file. Here the QName type is used as a real QName – a namespace-
qualified element name – not a prefixed id value.

message
The root element message is also an item-aware element. messageRef is an attribute of
messageFlow, messageEventDefinition, sendTask, and receiveTask, and points to a message element.

To support the Message shape in the diagram, the Analytic subclass includes only the message
attributes id and name. In executable BPMN, the additional message attribute itemRef is a
prefixed id pointer to an itemDefinition detailing the message structure. In that case, the
structureRef of the itemDefinition often references an element in an imported WSDL file.

 Chapter 20. Variables and Data Mapping | 221

Importing Structure Definitions
We have already seen how the import root element is used to import BPMN files into the
model. In BPMN meant for execution or detailed business requirements, import is also used to
reference message and data structures defined in external WSDL and XSD files. Other type
languages are allowed by BPMN 2.0, but the spec says that WSDL and XSD import are
required for conformance.

When importing XSD files, the importType attribute of import must be set to
http://www.w3.org/2001/XMLSchema. When importing WSDL 2.0 files, importType must be set
to http://www.w3.org/TR/wsdl20/. The attribute location specifies the URL or filepath of the
imported file, and the attribute namespace specifies the target namespace of the imported file.

Example: Data Flow with Imported Item Definitions
To illustrate the use of itemDefinition and import, we return to a simple data flow example,
shown in Figure 20-1.

Figure 20-1. Simple data flow with imported item definitions

The serialization is shown below:

<definitions targetNamespace="http://www.itp-commerce.com"
xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL" xmlns:itp="http://www.itp-
commerce.com/BPMN2.0" xmlns:order="http://www.example.org/Order" xmlns:tns="http://www.itp-
commerce.com" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" exporter="Process Modeler 5 for
Microsoft Visio" exporterVersion="5.2742.13663 SR6" id="_a26428bb-9287-4346-b659-1d89f5d41217"
xsi:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL schemas\BPMN20.xsd">
 <import importType="http://www.w3.org/2001/XMLSchema" location="Order.xsd"
namespace="http://www.example.org/Order"/>
 <import importType="http://www.w3.org/TR/wsdl20/" location="OrderProcess.wsdl"
namespace="http://www.example.org/Order"/>
 <itemDefinition id="item001" structureRef="order:OrderDetails"/>
 <itemDefinition id="item002" structureRef="order:OrderMsg"/>
 <message id="msg001" name="Order" itemRef="tns:item002"/>
 <collaboration id="_2ac611c8-fd55-46eb-8af3-1b3e8229a297">
 <participant id="_d4c94914-9ee4-402d-86d2-427956d26872" name="Customer"/>
 <participant id="p_5c311ebc-4ae3-41aa-a2f5-a7802720c773" name="Order Process"
processRef="_5c311ebc-4ae3-41aa-a2f5-a7802720c773"/>
 <messageFlow id="_1a70e302-c697-42fe-b612-d4d286891621" name="Order" sourceRef="_d4c94914-

222 | Chapter 20. Variables and Data Mapping

9ee4-402d-86d2-427956d26872" targetRef="_a5ff783f-b313-46f4-997c-6a5f3bee18e0"
messageRef="tns:msg001"/>
 </collaboration>
 <process id="_5c311ebc-4ae3-41aa-a2f5-a7802720c773" name="Order Process" processType="None">
 <startEvent id="_c529a130-7805-4b9e-90b7-8d923e4813ca" name="Receive order">
 <dataOutput id="do_c529a130-7805-4b9e-90b7-8d923e4813ca" itemSubjectRef="tns:item001"/>
 <dataOutputAssociation id="_5f837dfc-d686-4e1c-bb9e-67123e59cadf">
 <sourceRef>do_c529a130-7805-4b9e-90b7-8d923e4813ca</sourceRef>
 <targetRef>_37bff1e7-a72c-434a-81b9-2873d11b8845</targetRef>
 </dataOutputAssociation>
 <messageEventDefinition messageRef="tns:msg001"/>
 </startEvent>
 <task id="_f2509706-84ef-4f59-8fdb-5f25b3102686" name="Fulfill Order">
 <ioSpecification>
 <dataInput id="di_f2509706-84ef-4f59-8fdb-5f25b3102686" itemSubjectRef="tns:item001"/>
 <inputSet>
 <dataInputRefs>di_f2509706-84ef-4f59-8fdb-5f25b3102686</dataInputRefs>
 </inputSet>
 <outputSet/>
 </ioSpecification>
 <dataInputAssociation id="_985c2eb0-3265-4f13-a295-e29778b1c973">
 <sourceRef>_37bff1e7-a72c-434a-81b9-2873d11b8845</sourceRef>
 <targetRef>di_f2509706-84ef-4f59-8fdb-5f25b3102686</targetRef>
 </dataInputAssociation>
 </task>
 <endEvent id="_846d6306-9380-4e56-aee7-532d1ef96fc5" name="Order complete"/>
 <dataObject id="_37bff1e7-a72c-434a-81b9-2873d11b8845" name="Order details"
itemSubjectRef="tns:item001"/>
 <sequenceFlow id="_88c3ac5d-877d-465e-9669-c7f6b2443105" sourceRef="_c529a130-7805-4b9e-
90b7-8d923e4813ca" targetRef="_f2509706-84ef-4f59-8fdb-5f25b3102686"/>
 <sequenceFlow id="_689e46f9-5213-49fd-8050-4649e6368cf1" sourceRef="_f2509706-84ef-4f59-8fdb-
5f25b3102686" targetRef="_846d6306-9380-4e56-aee7-532d1ef96fc5"/>
 </process>
</definitions>

Figure 20-2. Serialization of simple data flow with imported item definitions

Note the following about the serialization in Figure 20-2:

• There are two import elements, one for the schema file Order.xsd and the other for a
WSDL file OrderMsg.wsdl. In this case they are in the same namespace, although it is
quite common to use separate namespaces for related XSD and WSDL files.

• The namespace for the imported files is declared in definitions and assigned the prefix
order.

• Also declared in definitions is the prefix tns, standing for the BPMN file
targetNamespace. Since here it is the same as the default (unprefixed) namespace, we
don’t absolutely need it. But since the id values of itemDefinition and message are not
globally unique in this serialization, QName references to them can be made
unambiguous with the namespace prefix.

 Chapter 20. Variables and Data Mapping | 223

In this simple example, the start event dataOutput, the dataObject, and the task dataInput all
reference the same element OrderDetails in Order.xsd. In the general case they do not need to
be identical, as a data association can perform a mapping between them.

Properties and Instance Attributes
Values of data objects, data inputs, and data outputs may be accessed for use in data
mappings and condition expressions. In addition, BPMN defines two more data elements for
this purpose, property and instance attribute.

• A property is a user-defined data element of a process, activity, or event. It has no
graphical representation in the model. For example, a key performance indicator
could be defined as a property.

• The spec defines various instance attributes of a process, activity, or event,
representing values that vary by instance at runtime. The currently assigned task
performer, task priority, and current loop count of a loop activity are examples of
instance attributes.

Data Mapping
Whether data flow is visualized in the diagram or not, data mapping is critical to all aspects of
executable BPMN. The dataInputs and dataOutputs of some tasks in the process model may be
predetermined by the implementation, while others may be user-defined. In either case, data
must be mapped between process variables (dataObjects), properties, or instance attributes and
the task dataInputs and dataOutputs. The mapping may be expressed in the BPMN 2.0 XML in
several ways, as described below.

Identity Mapping
Identity mapping means the source and target of a data association reference the same data
structure. In that case, only the sourceRef and targetRef are specified in the XML.

Figure 20-3. Incident Management process. Source: OMG

224 | Chapter 20. Variables and Data Mapping

For example, the Incident Management example from the OMG website25 (Figure 20-3) shows a
identity mapping from the dataObject representing the business object TicketItem to a dataInput
of a serviceTask named insert issue into product backlog:

…

 <dataObject id="TicketDataObject" itemSubjectRef="tns:TicketItem" />
…

 <serviceTask name="Insert issue into product backlog"
 operationRef="tns:addTicketOperation" id="_1-325">
 <ioSpecification>
 <dataInput itemSubjectRef="tns:TicketItem" id="TicketDataInputOf_1-325" />
 <inputSet>
 <dataInputRefs>TicketDataInputOf_1-325</dataInputRefs>
 </inputSet>
 <outputSet />
 </ioSpecification>
 <dataInputAssociation>
 <sourceRef>TicketDataObject</sourceRef>
 <targetRef>TicketDataInputOf_1-325</targetRef>
 </dataInputAssociation>
 </serviceTask>

…
 <itemDefinition id="TicketItem" isCollection="false" itemKind="Information"
 structureRef="com.camunda.examples.incidentmanagement.TroubleTicket" />

…

Figure 20-4. Identity mapping example. Source: OMG

Identity mapping is indicated by a dataInputAssociation without an assignment child element.
With identity mapping, the sourceRef and targetRef elements must have the same datatype.
Here they clearly do, as both the dataInput and dataObject have itemSubjectRef pointing to the
same itemDefinition. The details of the itemDefinition datatype are not provided in this OMG
example. Ideally, the structureRef attribute should point to an element or complex type in an
imported XSD file.

Assignment From/To Mapping
If the source and target data elements are not identical, the assignment/from and assignment/to
elements of a data association define the mapping. The assignment/from and assignment/to
elements are expressions in the default expressionLanguage specified in the definitions root,
unless overridden by the language attribute of the from or to element itself. In the fragment
below, also excerpted from the OMG Incident Management example, the default expression
language is the Java Universal Expression Language (UEL). The BPMN 2.0 Common

25 http://www.omg.org/cgi-bin/doc?dtc/10-06-02.pdf

 Chapter 20. Variables and Data Mapping | 225

Executable subclass requires support for XPath 1.0 as the expression language, but Java-based
tools may find UEL easier to implement.
 <dataObject id="TicketDataObject" itemSubjectRef="tns:TicketItem" />

…
 <sendTask name="Send mail to account manager" messageRef="tns:AnswerMessage"
 operationRef="tns:sendMailToIssueReporterOperation" id="_1-150">
 <ioSpecification>
 <dataInput itemSubjectRef="tns:AnswerItem" id="AnswerDataInputOfSendTask" />
 <inputSet>
 <dataInputRefs>AnswerDataInputOfSendTask</dataInputRefs>
 </inputSet>
 <outputSet />
 </ioSpecification>
 <dataInputAssociation>
 <sourceRef>TicketDataObject</sourceRef>
 <targetRef>AnswerDataInputOfSendTask</targetRef>
 <assignment>
 <from>${getDataObject("TicketDataObject").reporter}</from>
 <to>${getDataInput("AnswerDataInputOfSendTask").recipient}</to>
 </assignment>
 <assignment>
 <from>
 A ticket has been created for your issue, which is now in
 status ${getDataObject("TicketDataObject").status}.
 </from>
 <to>${getDataInput("AnswerDataInputOfSendTask").body}</to>
 </assignment>
 </dataInputAssociation>
 </sendTask>

Figure 20-5. Mapping example using assignment/from and assignment/to in UEL. Source:
OMG

Here specific elements the TicketItem data object are mapped to elements of the dataInput of
the sendTask named Send mail to account manager. Specifically, the reporter element of the
TicketItem is mapped to the recipient element of the task dataInput, and a text string containing
the status element of the TicketItem is mapped to the body element of the dataInput. Note here
that from and to expressions do not reference the dataObject or dataInput directly, but use
accessor functions getDataObject and getDataInput. BPMN 2.0 defines these as extension functions
for XPath expressions accessing elements of data objects, data inputs and outputs, properties,
and instance attributes. In the example above, UEL makes use of the same functions,
although they may not be necessary. In XPath, the mapping would look like this:
 <dataInputAssociation>
 <sourceRef>TicketDataObject</sourceRef>
 <targetRef>AnswerDataInputOfSendTask</targetRef>
 <assignment>
 <from>getDataObject("TicketDataObject")/tns:reporter</from>
 <to>getDataInput("AnswerDataInputOfSendTask")/tns:recipient</to>
 </assignment>

226 | Chapter 20. Variables and Data Mapping

 <assignment>
 <from>
 concat(“A ticket has been created for your issue, which is now in
 status”, getDataObject("TicketDataObject")/tns:status)
 </from>
 <to>getDataInput("AnswerDataInputOfSendTask")/tns:body</to>
 </assignment>
 </dataInputAssociation>
 </sendTask>

Figure 20-6. Mapping example using assignment/from and assignment/to in XPATH

Transformation Mapping
Assignment/from and assignment/to map data elements one at a time. Alternatively, a single
transformation element can be used to map the data association’s sourceRef element to the
targetRef element. Unfortunately, transformation is defined in the spec as a single expression of
type tFormalExpression. It is not clear if, say, an XSLT 2.0 transformation could be used here.
XSLT is not really an expression language, and there is no way for transformation to reference
an external XSLT file. The contents of the XSLT could be copied into the transformation
element as a CDATA section.

Script Task Mapping
A more practical way to implement complex data mapping in BPMN is to use a scriptTask. A
scriptTask is code, embedded in the BPMN, that is executed on the process engine. (That
distinguishes it from a serviceTask, in which the process engine invokes some function
provided by some other system.) A script is a set of statements, a program, not just a single
expression. The script languages supported will vary from one process engine to the next.
They could include Javascript or Groovy. BPMN 2.0 Common Executable subclass does not
require support for any particular script language.

scriptTask has a scriptFormat attribute that specifies the script language as a MIME type string,
such as text/x-groovy (Groovy) or application/x-javascript (Javascript). A child script element
contains the script text, which may be enclosed in a CDATA section to prevent XML parsing
of the script.

The fragment below from the OMG Incident Management example illustrates populating a
dataOutput from a Groovy script.

<scriptTask name="Open ticket" scriptFormat="text/x-groovy" id="_1-26">
 <ioSpecification>
 <dataInput itemSubjectRef="tns:IssueItem"
 id="IssueDataInputOfScriptTask" />
 <dataOutput itemSubjectRef="tns:TicketItem" id="TicketDataOutputOfScriptTask"/>
 <inputSet>
 <dataInputRefs>IssueDataInputOfScriptTask</dataInputRefs>
 </inputSet>

 Chapter 20. Variables and Data Mapping | 227

 <outputSet>
 <dataOutputRefs>TicketDataOutputOfScriptTask</dataOutputRefs>
 </outputSet>
 </ioSpecification>
 <dataInputAssociation>
 <sourceRef>IssueDataInputOfProcess</sourceRef>
 <targetRef>IssueDataInputOfScriptTask</targetRef>
 </dataInputAssociation>
 <dataOutputAssociation>
 <sourceRef>TicketDataOutputOfScriptTask</sourceRef>
 <targetRef>TicketDataObject</targetRef>
 </dataOutputAssociation>
 <script><![CDATA[
 issueReport = getDataInput("IssueDataInputOfScriptTask")
 ticket = new TroubleTicket()
 ticket.setDate = new Date()
 ticket.setState = "Open"
 ticket.setReporter = issueReport.getAuthor()
 ticket.setDesctiption = issueReport.getText()
 setDataOutput("TicketDataOutputOfScriptTask", ticket)
]]></script>
 </scriptTask>

Figure 20-7. Data mapping example using Groovy script. Source: OMG

229

CHAPTER 21

21. Services, Messages, and Events

Services
Except for scripts embedded in the XML itself, BPMN 2.0 assumes an automated task is a
service invoked by the process. The BPMN 2.0 metamodel defines the basic elements of a
service. Unlike BPEL, BPMN does not require a web service implementation, but it does
assume the service has an interface with enumerated operations invoked by messages.

interface
A service interface is a root element in the BPMN XML, containing name and one or more
operation elements. The interface element also has an optional implementationRef attribute that
points to a concrete implementation artifact representing the interface, such as a WSDL
portType.

A participant in a collaboration may reference a number of interface and endpoint elements. The
actual definition of the service address is out of scope of BPMN 2.0. The endPoint may be
specified, via WS-Addressing or equivalent, using extensionElements.

operation
An operation defines the message elements used for the request, response, and errors. Each
operation must have a name, unique in its namespace, and exactly one inMessageRef, a pointer
to the request (input) message. If the operation returns a response, it also specifies an
outMessageRef as well as zero or more errorRef elements. errorRef does not point to a message
but to a root error element. It may also provide an implementationRef that points to a concrete
implementation artifact representing the operation, such as a WSDL operation.

Messages
Each message used in an executable process should be declared in a root element of the model.
The message element provides a name and an itemRef that points, by prefixed id, to an

230 | Chapter 21. Services, Messages, and Events

itemDefinition. The itemDefinition in turn has a structureRef that points, by name, to a data
structure definition such as an element or complex type in an imported XSD or WSDL

BPMN supports a range of message implementations, but generally assumes that the message
is composed of a header, used for endpoint addressing, quality of service, and security, and a
payload that holds the message content. The dataInput and dataOutput of BPMN Message
events and Send or Receive tasks map to the message payload only, not the header.

The BPMN spec describes a CorrelationKey mechanism for binding a message to a particular
process instance at runtime, but its use is restricted to Conversation models, a special form of
collaboration oriented to B2B interactions. I have never seen Conversations used in practice,
and they are not covered in this book, but the need to identify the target process instance of an
incoming message is universal in executable processes, even in BPM Suites that do not
support collaboration or message flows at all. For that very common use case, each BPM Suite
must provide its own correlation implementation through an instance ID value embedded in
the message payload. A standard way to implement message correlation without
Conversations would appear to be a major omission in the BPMN 2.0 spec.

Automated Tasks

serviceTask
A serviceTask is a task that automatically invokes a service operation. Its implementation
attribute specifies the technology used to send the invocation message and receive the
response. If omitted, the default value ##WebService is implied. Alternatively, implementation
may contain a URI specifying another messaging technology, or ##unspecified to leave the
implementation open. The optional attribute operationRef (required for web service
implementation) points by QName to an operation in a service interface.

A serviceTask has a single dataInput with itemDefinition equivalent to that of the message
defined by the referenced operation’s inMessageRef. Similarly, if the service returns output, the
serviceTask has a single dataOutput with itemDefinition equivalent to that of the message defined
by the operation outMessageRef. At execution, the process engine copies the task dataInput to
the input message payload, and copies the returned output message payload to the task
dataOutput.

Again, the Incident Management example from OMG provides a simple illustration.
 <process isExecutable="true" id="WFP-1-1">

…
 <dataObject id="TicketDataObject" itemSubjectRef="tns:TicketItem" />

…
 <serviceTask name="Insert issue into product backlog"
 operationRef="tns:addTicketOperation" id="_1-325">
 <ioSpecification>
 <dataInput itemSubjectRef="tns:TicketItem" id="TicketDataInputOf_1-325" />
 <inputSet>
 <dataInputRefs>TicketDataInputOf_1-325</dataInputRefs>

 Chapter 21. Services, Messages, and Events | 231

 </inputSet>
 <outputSet />
 </ioSpecification>
 <dataInputAssociation>
 <sourceRef>TicketDataObject</sourceRef>
 <targetRef>TicketDataInputOf_1-325</targetRef>
 </dataInputAssociation>
 </serviceTask>

…
 </process>
 <interface name="Product Backlog Interface"
 implementationRef="java:com.camunda.examples.incidentmanagement.ProductBacklog">
 <operation name="addTicketOperation" implementationRef="addTicket"
 id="addTicketOperation">
 <inMessageRef>tns:AddTicketMessage</inMessageRef>
 </operation>
 </interface>

…
 <message id="AddTicketMessage" name="addTicket Message" itemRef="tns:TicketItem" />

…
 <itemDefinition id="TicketItem" isCollection="false" itemKind="Information"
 structureRef="com.camunda.examples.incidentmanagement.TroubleTicket" />

Figure 21-1. Service task definition in BPMN 2.0. Source: OMG

The serviceTask named Insert issue into product backlog has a single dataInput that references the
itemDefinition TicketItem. Its operationRef points to an operation named addTicketOperation. That
operation has the input message AddTicketMessage. (Note that the example points to the message
by prefixed id rather than by a unique name.) Both the message data, identified by itemRef, and
the task dataInput point to the same TicketItem element.

sendTask
sendTask works almost the same as serviceTask, except that there is, by definition, no response
message. A failed sendTask operation may, however, return errorRefs. Optional attributes
implementation and operationRef are specified exactly as in serviceTask. Optional attribute
messageRef points to the message by prefixed id. If an operation is specified, the message
datatype must match that of the task dataInput.

receiveTask
A receiveTask waits for a message identified by attribute messageRef. It may also reference an
operation, indicating the message is a response to an asynchronous service invoked previously.
In that case, the message payload datatype must match that of the task dataOutput. The
optional Boolean attribute instantiate is allowed only if the receiveTask has no incoming
sequence flow, making it an implicit start node of the process. A value of true signifies

232 | Chapter 21. Services, Messages, and Events

instantiation of the process when the message is received. Method and Style recommends use
of Message startEvent to signify this behavior instead of instantiate on receiveTask.

businessRuleTask
A businessRuleTask is intended to invoke an automated decision from a business rule engine.
In that sense, it sounds like a special use case of a serviceTask. However, unlike serviceTask,
businessRuleTask does not specify an operation, so its use in practice effectively requires
proprietary extensionElements.

Events

Message Events
A Message event is any event, whether throwing or catching, with a messageEventDefinition.
The messageEventDefinition element has optional attributes messageRef and operationRef that
work exactly the same as in sendTask and receiveTask. messageEventDefinition is usually
specified as a child of a specific Message event element, but BPMN allows a single
messageEventDefinition to be reused by specifying it as a root element and then pointing to it
from the eventDefinitionRef child of multiple message event elements.

Signal Events
A Signal event is any event, throwing or catching, with a signalEventDefinition. As with
message events, the signalEventDefinition may be specified for each Signal event or by
reference to a reusable root element. However, the signalEventDefinition only provides a
signalRef pointer to a root signal element, which has attributes id, name, and structureRef
pointing to an itemDefinition by prefixed id. Similar to message, a Signal catch event copies
the trigger payload to a dataOutput of the event, implying that dataOutput must be of the same
datatype, and a Signal throw event copies the dataInput to the thrown signal payload.

Error and Escalation Events
Error and Escalation events work the same way. An errorEventDefinition or
escalationEventDefinition provides merely a pointer to a root error or escalation element that
provides attributes id, name, errorCode or escalationCode, and structureRef. The structureRef is a
QName that points to an itemDefinition by id. (I think this is a bug in the XSD, since
itemDefinition also has attribute structureRef that points to an imported element or complex
type by name, not id. The pointer by id to itemDefinition should be named itemRef or
itemSubjectRef… not structureRef.)

errorCode and escalationCode are simple strings used to match throw-catch pairs. Throwing
events must provide it, but it is optional for boundary events. (This actually kind of strange,
since errorCode belongs to the reusable error element, not to a specific event.) An Error
boundaryEvent will catch any error signal with matching errorCode thrown from a child level

 Chapter 21. Services, Messages, and Events | 233

event, and similarly for Escalation. If errorCode is omitted, the boundaryEvent will catch any
error thrown from the child level.

The referenced itemDefinition, if it exists, specifies the structure of the error or escalation
payload. Similar to Message and Signal events, upon execution the dataInput of a throwing
Error event is copied to the error payload, which is then propagated to the dataOutput of the
Error boundaryEvent. Again, the datatype of the error itemDefinition must match that of the
Error event dataInput or dataOutput. Escalation works the same way.

Timer Events
Timer events do not transmit or receive data, so they have no dataInput or dataOutput. The
timerEventDefinition specifies the deadline though one of three child elements, all of type
tExpression: timeDate, timeDuration, or timeCycle.

The timeDate expression, which in most cases is a literal string, must resolve to a value
consistent with ISO-8601 time and date formats. This encompasses quite a wide range of
formats; for interoperability, I recommend use of the XSD date, time, and dateTime types,
which are consistent with ISO-8601.

The timeDuration expression must resolve to a value consistent with ISO-8601 time interval
formats. These take the form P[n]Y[n]M[n]D[n]TH[n]M[n]S or P[n]W. Here [n] is replaced by
a number indicating the quantity of the units specified by the preceding letter; if the value is
zero, the letter and [n] may be omitted. P always starts the expression; Y, M, and D stand for
years, months, and days; T starts the time part of the expression; H, M, S means hours,
minutes, seconds; and W means weeks. Thus, for example P4M means 4 months, and PT4M
means 4 minutes.

The timeCycle expression is reserved for repeating intervals, such as in a Timer startEvent or
non-interrupting Timer boundaryEvent. (In BPMN 1.2, durations used an attribute named
timeCycle, so this could be a source of confusion in BPMN 2.0.) The timeCycle expression value
must be consistent with ISO-8601 for repeating intervals. Again, ISO-8601 allows many
options for this, all starting with R[n]/, where [n] indicates the number of repetitions
(unbounded if omitted), and continuing either with start and end dateTime separated by /, or
start plus duration separated by /, or duration plus end separated by /, or just duration.

Thus, a Timer startEvent that occurs on September 11, 2011, Pacific Time, and every 7 days
thereafter would have timeCycle evaluate to

R/2011-09-07T14:00:00-07:00/P7D

235

CHAPTER 22

22. Human Tasks

In an executable process, a userTask signifies a human task managed by the process engine. A
manualTask signifies some human activity that is not managed by the process engine. We will
focus here on the specification of a userTask and its associated resource.

userTask
The implementation attribute of a userTask may be ##WebService, ##unspecified, or a URI
indicating another technology or coordination protocol. For example, a value of
http://docs.oasis-open.org/ns/bpel4people/ws-humantask/protocol/200803 signifies WS-HumanTask
as the implementation.

Optional child element rendering provides a hook to specify, via tool-proprietary
extensionElements, details of the task user interface. Input and output data of a userTask is
specified in the ioSpecification element, as with any other type of activity.

Two instance attributes of userTask are accessible for use in expressions via the
getInstanceAttribute function:

• actualOwner, a string uniquely identifying a single user who has claimed or is
performing the task.

• taskPriority, an integer used to sort userTask instances in a queue.

Performer Assignment
BPMN allows the modeler to specify any number of resource root elements that may be
referenced by an activity, whether human or automated, as playing some resourceRole. Each
resource represents a static list of users belonging to a certain role or organizational unit. How
the universe of all users is assigned to each resource is outside the scope of BPMN. In the
metamodel, resourceRole is an abstract class. Its only defined subclass is performer, which in
turn has subclass humanPerformer, which in turn again has subclass potentialOwner. Each
subclass represents a particular specialization of the parent class, and the spec invites

236 | Chapter 22. Human Tasks

implementers to define their own subclasses. However, the only element actually spelled out
in the spec is potentialOwner, meaning the set of individuals allowed as performers of a
particular userTask. When one member of that set claims or performs the task, it is identified
as the task’s actualOwner, an instance property.

There are two alternative ways to specify task assignment to potentialOwner: by parameterized
query, or by expression assignment. Assignment by expression is more convenient when each
resource is defined as a very specific role, group, or capability, and the potentialOwner of a
userTask is several of them. On the other hand, if each resource represents a broad group of
users differing in specific role, organizational unit, or capability, assignment by
parameterized query allows task assignment to a subset of the resource.

Task Assignment by Parameterized Query
Parameterized query assumes each member of a resource exposes a set of parameters. The
root element resource must have a name and may contain a list of child resourceParameter
elements used with parameterized queries. Each resourceParameter has attributes id, name,
type, and Boolean isRequired. Here type is either a simple type or a pointer to an itemDefinition,
identifying the datatype of the parameter.

With selection by parameterized query, potentialOwner must contain child resourceRef that
points to a resource element containing resourceParameters, plus any number of child
resourceParameterBinding elements, each a formal expression of resourceParameters. If no
resourceParameterBindings are provided, all members of the resource become members of
potentialOwner.

The following parameterized query scenario is an extension of the Incident Management
example from OMG:

…
 <resource id="FirstLevelSupportResource" name="1st Level Support" />

<resourceParameter id="product" isRequired="true" name="Product"
type="xsd:string"/>
<resourceParameter id="region" isRequired="true" name="Region" type="xsd:string"/>

 </resource>
…

 <process isExecutable="true" id="WFP-1-1">
…

 <userTask name="edit 1st level ticket" id="_1-77">
 <ioSpecification>
 <dataInput itemSubjectRef="tns:TicketItem" id="TicketDataInputOf_1-77" />
 <dataOutput itemSubjectRef="tns:TicketItem" id="TicketDataOutputOf_1-77" />
 <inputSet>
 <dataInputRefs>TicketDataInputOf_1-77</dataInputRefs>
 </inputSet>
 <outputSet>
 <dataOutputRefs>TicketDataOutputOf_1-77</dataOutputRefs>
 </outputSet>
 </ioSpecification>

 Chapter 22. Human Tasks | 237

 <dataInputAssociation>
 <sourceRef>TicketDataObject</sourceRef>
 <targetRef>TicketDataInputOf_1-77</targetRef>
 </dataInputAssociation>
 <dataOutputAssociation>
 <sourceRef>TicketDataOutputOf_1-77</sourceRef>
 <targetRef>TicketDataObject</targetRef>
 </dataOutputAssociation>
 <potentialOwner>
 <resourceRef>tns:FirstLevelSupportResource</resourceRef>
 <resourceParameterBinding parameterRef=”tns:product”>
 getDataInput(“TicketDataInputOf_1-77”)/product

</resourceParameterBinding>
 <resourceParameterBinding parameterRef=”tns:region”>
 getDataInput(“TicketDataInputOf_1-77”)/region
 </resourceParameterBinding>
 </potentialOwner>
 </userTask>

…
 </process>

Figure 22-1. Human task assignment by parameterized query. Source: OMG

The userTask ‘edit 1st level ticket’ has potentialOwner/resourceRef that points by id to the resource
FirstLevelSupportResource, a list of all first level support resources. That resource has two
required parameters, product and region, meaning each member of this list must have a product
value and a region value. Here we want the potentialOwner of this particular userTask to be just
specialists in the product referenced in the TicketItem and in the requester’s region. The
resourceParameterBinding elements select members of the resource that satisfy the both query
conditions, which are XPath expressions of the TicketItem dataInput.

Task Assignment by Expression
Alternatively, potentialOwner may replace resourceRef and resourceParameterBinding with child
resourceAssignmentExpression. This element contains child element expression, a formal
expression that evaluates to one or more resources, e.g., by OR-ing them together.

239

CHAPTER 23

23. Executable BPMN in Practice

From the preceding discussion it would be easy to imagine that executable process design in
BPMN 2.0 is a matter of populating values in the XML structure. But that’s not at all how it’s
done. Real BPM Suites employ graphical editors that streamline the work of defining process
data, mapping it to and from task input/output parameters, assigning human task performers,
and similar aspects of executable design. The BPMN 2.0 XML we’ve been discussing
represents simply an interchange format for the executable design. All the tedious data
association mappings required in the XML – inputSet to dataInput, dataInput to itemDefinition,
itemDefinition to imported XSD element – are created automatically under the covers by the
tool. The modeler doesn’t have to think about it.

If a tool can export its executable models in accordance with the BPMN 2.0 schema, I call that
executable BPMN 2.0. If you are using a BPMN-based BPM Suite, you might ask your
vendor, “Well, how hard could that be?” But you would be surprised. As of this writing,
more than a year after publication of the final BPMN 2.0 spec, commercial BPM Suites are
only almost there.

In this chapter we’ll discuss some of the differences between the way executable processes are
designed in real tools and how they are serialized in BPMN 2.0. We’ll see examples of how
that works with an open source BPMN 2.0-based BPMS called Bonita Open Solution (BOS)26
from BonitaSoft.

26 www.bonitasoft.com

240 | Chapter 23. Executable BPMN in Practice

Handling Java Data
The BPMN 2.0 specification provides explicit requirements and examples for importing,
referencing, and mapping XML data, but is silent on how to handle data as it is most
commonly defined by developers, in Java or some similar programming language. The
BPMN spec is explicit in allowing non-XML type definitions, but it does not say exactly how
to do it.

Referencing Java Data
As a practical matter, if you use a programming language like Java to define process data, you
are inevitably bound by the conventions of a particular tool or IDE. It is not quite as
“standard” as XML data. Be that as it may, executable process design has traditionally been
the domain of developers, and it is not at all uncommon to find that your BPM Suite is using
Java types, not XSD, to define BPMN process data.

In that case, how should that data be referenced in the BPMN 2.0 XML? The BPMN spec
leaves each tool to define its own conventions. One convention is to use a pseudo-namespace
prefix such as java: to identify elements from a Java namespace, and within that namespace
use Java qualification rules to refer to a simple type, Java class or nested class. For example,
with simple types like

<itemDefinition id=”item001” structureRef=”java:float”/>

the data type of the itemDefinition is clear from the BPMN XML. But that is not so with
complex business objects:

<itemDefinition id=”item002” structureRef=”java:myClass.nestedClass”/>

With complex XML data, the structureRef points to an element or complex type from an XSD
file referenced by an import element, but this is usually not the case with Java data. OMG’s
Incident Management example we looked at previously had no such import, for instance.
According to Falko Menge of Camunda, author of that example, “These structureRefs are fully-
qualified Java class names, which is the standard way of identifying a Java class. A Java-based
Engine is able to load the class using that name. An import would only be needed if the
package name, e.g., com.camunda.examples.incidentmanagement, is not specified. However, all
Java-based engines that I know just use fully-qualified class names. Note that the XML
shown in BPMN 2.0 by Example has been created before any Java-based Engine existed and is
therefore just a suggestion on how Java-Code could be referenced.”27

For a developer in a Java IDE, there is no problem in accessing and inspecting the classes used
in the model, whether or not there is an import element in the BPMN file. The problem is that
outside such a tool, the process data definitions are invisible. While the model is indeed
executable, it seems to violate the spirit of a transparent, standards-based serialization.

27 Falko Menge, private communication, September 29, 2011

 Chapter 23. Executable BPMN in Practice | 241

To increase transparency, you could always import the Java classes. Here the file Example.java
defines the data:

package org.bonitasoft.bpmn;
public class Example {
 public String att1;
 public int att2;
 public InternType att3;
 public class InternType{
 }
}

and in the BPMN, an import element points to it:
< import importType="http://jcp.org/en/jsr/detail?id=270" location="Example.java"

 namespace="http://jcp.org"/>

Once imported, a class can be referenced by itemDefinition:
<itemDefinition id="itemX" structureRef="java:org.bonitasoft.bpmn.Example$InternType"/>

In any case, referencing Java data in BPMN 2.0 is likely to remain implementation-specific.

Besides the issue of defining process data in Java, there is the question of how to use that data
in data association mappings, gateway conditions, and other expressions required by the
process model. With XML data, element references and expressions typically use XPATH 1.0,
which is the BPMN 2.0 default. With Java data, there is no generally agreed way to do it.
Implementations may reference elements using the Java “dot” notation, or use something like
XPATH when the structure is XML but the individual element types are Java.

For expressions involving Java data, BPMN 2.0 tools seem to be using either UEL or Groovy.

UEL

Activiti28, for example uses UEL. It stands for Unified Expression Language and is part of the

Java EE6 specification29. UEL supports two types of expressions, value expressions and method
expressions. Depending on the implementation, either may be used for expressions in BPMN.
These expressions can be used to resolve and compare primitives, beans, lists, arrays and
maps. A value expression resolves to a value. In UEL, variables and bean (object) properties
are referenced using the following syntax:

${myVar}
${myBean.myProperty}

28 http://www.activiti.org/

29 http://docs.sun.com/app/docs/doc/820-7627/gjddd?l=en&a=view

242 | Chapter 23. Executable BPMN in Practice

A method expression invokes a method, with or without parameters. Parameters may be
literal values or expressions. The syntax is as shown below:

${printer.print()}
${myBean.addNewOrder('orderName')}
${myBean.doSomething(myVar, execution)}

The following examples, from the Activiti 5.7 User Guide30, show how UEL is used in
condition expressions on sequence flows out of an XOR gateway. In this example,

<conditionExpression xsi:type="tFormalExpression">
 <![CDATA[${order.price > 100 && order.price < 250}]]>
</conditionExpression>

UEL defines a value expression referencing process variables.

In this example,

<conditionExpression xsi:type="tFormalExpression">
 <![CDATA[${order.isStandardOrder()}]]>
</conditionExpression>

UEL uses a method expression that returns a Boolean value.

To prevent XML processors from parsing the UEL, it is best to enclose it in a CDATA section
in the BPMN model, as shown above.

Groovy

BonitaSoft uses Groovy31. Groovy is an object-oriented programming or scripting language
for the Java platform. It is a dynamic language with features similar to those of Python, Ruby,
Perl, and Smalltalk. Groovy is dynamically compiled to Java Virtual Machine (JVM) bytecode
and interoperates with other Java code and libraries. Most Java code is also syntactically valid
Groovy.

Groovy can be used both for expressions and for full scripts. As an expression language, it
offers advantages over pure Java, as illustrated by this example from the JasperForge
website32:

30 http://www.activiti.org/userguide/index.html#conditionalSequenceFlowXml

31 http://groovy.codehaus.org/

32 http://jasperforge.org/uploads/publish/ireportwebsite/IR%20Website/iReport_groovy.html

 Chapter 23. Executable BPMN in Practice | 243

Figure 23-1. Java versus Groovy expressions. Source: JasperForge

 As with UEL, Groovy expressions may include methods. They use a similar ${ } notation
and may include special characters; if so, the expression should be enclosed in CDATA. The
following Groovy example from BonitaSoft means the condition on this sequence flow is if the
variable named available has value false():

<conditionExpression xsi:type="tFormalExpression">
 ${!available }
</conditionExpression>

Are XPATH Data Access Functions Needed?
The BPMN 2.0 specification does not allow XPATH to directly reference item-aware elements
(dataObject, dataInput, property, etc.). Instead, it requires special XPATH extension functions like
getDataObject(‘[data object id]’). The reason, supposedly, for it is to establish unambiguously
the context node of the XPATH reference, although it seems to me that

dataObject[@id=’data object id’]

accomplishes the same thing. The spec does not say whether such functions are required
when other expression languages, such as UEL or Groovy, are employed. I would think they
are not.

The Incident Management process in the OMG’s non-normative BPMN 2.0 by Example
document, which we have referenced several times in this book, does use these functions for
referencing Java data in UEL expressions. However, the examples from the Activiti website,
which also use UEL, do not use these functions.

The test of whether or not the functions are needed comes down to the executable
implementation. Elements of type tFormalExpression in the BPMN XML should have values as
they are required in the executable design. If the process engine does not need getDataObject()
for proper execution, then it should not appear in the conditionExpression.

244 | Chapter 23. Executable BPMN in Practice

Services and Service Adapters
One critical difference between BPMN 2.0 as an executable design language and BPEL33, an
older process execution language standard from OASIS, is that BPEL assumes all tasks are
implemented as web services described by WSDL and invoked by SOAP messages, but BPMN
does not. In BPMN 2.0, a serviceTask may be implemented as a SOAP-based web service, but
that is not the only option. It could be a RESTful service, a Java remote procedure call, or any
other implementation supported by the process engine.

In particular, most commercial BPM Suites provide service adapters (sometimes called
connectors) that expose a user-configurable service interface for any number of functions
provided both by the BPMS itself and by external systems. For example, reading or writing a
file, sending email, performing a database lookup, and adding a new customer in the ERP
system are all functions typically implemented by a service adapter.

BPM Suites vary widely in the architecture and configuration of their adapters. However,
BPMN 2.0 does impose certain web service-like constraints on their specification in the
process model XML, as described in Chapter 21:

• A service adapter must specify an interface with one or more operations.

• Each operation must specify a single input message and single output message.

• A serviceTask must reference exactly one of those operations.

• The serviceTask must have a single dataInput and (if the operation returns a response) a
single dataOutput.

• The serviceTask dataInput must be of the same type as the operation’s input message,
and the same goes for the output.

Thus, even if the service adapter implementation has no native concept of input and output
messages, the implementer needs to specify those constructs to satisfy the BPMN 2.0
metamodel.

Example: Bonita Open Solution
To illustrate the relationship between executable design using service adapters in a real BPMS
and its serialization in the model, we’ll use a simple process created in BOS from BonitaSoft.
BOS claims to be the only complete open-source BPMS. Its process engine is not built natively
on BPMN 2.0 from the ground up, but BonitaSoft is committed to serialization of its process
models in a manner fully compliant with the BPMN 2.0 standard. The BPMN 2.0 export from
the current version, BOS v5.6, isn’t exactly as presented here, but the company plans to
implement a BPMN 2.0 export very close to this in BOS v6, scheduled for early 2012.

33 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

 Chapter 23. Executable BPMN in Practice | 245

The BPMN and XSD files excerpted in the following example are provided in downloadable
form on the book website www.bpmnstyle.com.

Figure 23-2. Training request process in BOS. Source: BonitaSoft

The example shown in Figure 23-2 illustrates a training request process. It starts upon receipt
of a training request message, labeled request. This is an XML message that contains the
requester name and contact information, the requested course ID and date, and number of
students. The first step is a service task that checks the availability of the requested course
through a database lookup. The result of the lookup is tested in a gateway, and if the course
is available, a script then calculates the invoice amount. Another service task sends the
invoice via email, then continues to wait for notification from a payment service provider that
the invoice has been paid. Upon receipt of payment, a user task registers the students. If
payment notification is not received by one day before the class begins, the registration
request fails.

The current implementation of BOS does not support event gateway or a timer boundary
event on a receive task, but it does support timer boundary event on a call activity, and that is
what is illustrated here. The process called by the call activity just contains a catching
Message event (plus start and end events).

The database lookup and the email are implemented as BonitaSoft connectors, BOS’s term for
service adapters. We’ll see how their configuration in the tool is expressed in the BPMN 2.0
export, as well as other aspects of executable design.

Defining Process Variables
The variables for this process are illustrated in Figure 23-3, along with the dialog for adding
new ones. In addition to simple datatypes like Text, Integer, Float, Date, or Boolean, BOS
supports XML or a Java object types. As discussed earlier, I believe the “spirit” of BPMN as a
standard is to expose the process data definitions in the serialization, not hide them. That

246 | Chapter 23. Executable BPMN in Practice

means the tool must export, in addition to the .bpmn file, data definition files such as XSD, and
reference those files by import in the BPMN XML.

Figure 23-3. Process variable definition in BOS. Source: BonitaSoft

In the BPMN 2.0 XML, each variable is represented by a dataObject and its corresponding
itemDefinition.

Simple types can be specified directly in itemDefinition/@structureRef by referencing a basic
XSD or Java type. For example the Boolean variable available is represented in the BPMN
XML as follows34:

<model:itemDefinition id="item04" structureRef="xsd:boolean"/>
…

<model:process>
…
<model:dataObject id="available" name="available" itemSubjectRef="item04"/>

</model:process>

For XML variables, BOS exports a data definition XSD file based on Ecore35, which stands for
Eclipse Modeling Framework core. EMF is a modeling framework and code generation facility
that generates Java classes for modeled business objects. Ecore.xsd, imported by this data
definition file, defines the data types. In our Training request process example, the request
message is based on the variable xmlRequest, which generates the following data definition
file:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xsd:schema xmlns:XMLRequest="http://www.bonitasoft.org/complexTypes"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.bonitasoft.org/XMLRequest" ecore:nsPrefix="TrainingRequest"
ecore:package="TrainingRequest">

34 BOS exports use the prefix model: to signify the BPMN 2.0 namespace.

35 http://www.eclipse.org/modeling/emf/?project=emf

 Chapter 23. Executable BPMN in Practice | 247

 <xsd:import namespace="http://www.eclipse.org/emf/2002/Ecore"
schemaLocation="Ecore.xsd"/>
 <xsd:element name="Request" type="XMLRequest:tRequest" ecore:ignore="true"/>
 <xsd:complexType name="tRequest">
 <xsd:attribute name="requesterName" type="ecore:EString"/>
 <xsd:attribute name="address" type="ecore:EString"/>
 <xsd:attribute name="email" type="ecore:EString"/>
 <xsd:attribute name="courseId" type="ecore:EString"/>
 <xsd:attribute name="courseDate" type="ecore:EDate"/>
 <xsd:attribute name="numStudents" type="ecore:EInt"
ecore:unsettable="false"/>
 </xsd:complexType>
</xsd:schema>

Figure 23-4. Exported data definition file for XML data using Ecore. Source: BonitaSoft

This data definition file is then imported by the BPMN file and referenced by
itemDefinition/@structureRef:

<model:import importType="http://www.w3.org/2001/XMLSchema" location="XMLRequest.xsd"
namespace="http://www.bonitasoft.org/complexTypes"/>

<model:message id="message01" name="request" itemRef="item01"/>
<model:itemDefinition id="item01" structureRef="n2:Request"/>

…
<process>

…
<model:dataObject id="xmlRequest" name="xmlRequest" itemSubjectRef="item01"/>

</process>

The XML variable in BOS generates the dataObject named xmlRequest, which points to the
itemDefinition that points to the Request element in the imported data definition file
(namespace prefix n2:). The message named request references the same itemDefinition.

For Java types (there are none in this example), itemDefinition directly references the Java
class, as illustrated earlier in this chapter.

Saving the Request Message
Upon receipt of the request message, the process first must save its contents in a variable, the
dataObject named xmlRequest. This is not automatic; it must be explicitly described in the
BPMN. What is automatic is copying the message payload to the dataOutput of the Message
startEvent. From there you need to use a dataOutputAssociation of the startEvent to map to the
dataObject. Since they have the same type, that is simple:

<model:startEvent id="Receive_training_request" name="Receive training request">
<model:dataOutput id="Receive_training_request_out" itemSubjectRef="item01"/>

 <model:dataOutputAssociation>
 <model:sourceRef>Receive_training_request_out</model:sourceRef>
 <model:targetRef>xmlRequest</model:targetRef>
 </model:dataOutputAssociation>
 <model:messageEventDefinition id="msgEvent01" messageRef="message01"/>

248 | Chapter 23. Executable BPMN in Practice

</model:startEvent>

Note also that the messageEventDefinition points to the message with id message01, which is the
start message named request.

Service Task – Database Lookup
Next the process executes a database lookup in the serviceTask Check Availability. This task is
implemented by a Bonita Connector, what I have called a service adapter. BonitaSoft provides
many connectors itself, and receives many more from its open source community. In this case
the process uses the MySQL Connector to execute a SQL query.

Each connector is configured in point-click fashion through a wizard. Figure 23-5 shows the
two input configuration screens for the connector. Figure 23-6 shows mapping of the
connector output to process variables.

Figure 23-5. BOS MySQL Connector input configuration. Source: BonitaSoft

 Chapter 23. Executable BPMN in Practice | 249

Figure 23-6. BOS MySQL Connector output mapping configuration. Source: BonitaSoft

Here the database connection information is static text passed to the connector, but the SQL
query string requires instance data, such as the courseId, courseDate, etc. You can see in Figure
23-5 a Groovy expression embedded in the SQL query string. The question is how to
represent all this in the BPMN 2.0 XML.

The BPMN 2.0 conceptual model says that a connector such as this represents an interface.
Each instance of the connector in the process model represents an operation with a single input
message and a single output message. And to describe the parameters contained in those
messages and their datatypes, we need an itemDefinition and structureRef for each one.

Figure 23-7. MySQL Connector in Connectors.xsd. Source: BonitaSoft

250 | Chapter 23. Executable BPMN in Practice

For this, BOS also generates a Connectors.xsd file in the BPMN export, containing the input and
output parameters. As with the xmlRequest data definition file, BPMN imports this XSD and
references it in the serviceTask dataInput and dataOutput. Figure 23-7 is a graphical
representation of the Connectors.xsd element for the MySQL connector.

The BPMN 2.0 XML below describes the serviceTask, including its input and output mappings
as described by the configuration wizard.

<!--request message is saved in dataObject id 'xmlRequest'-->
<model:serviceTask id="Check_Availability" name="Check Availability" implementation="BonitaConnector"
operationRef="execMySQL">
<!--operationRef points to the connector operation, which points to a message, which points to an
itemDefinition, which points to imported data structure-->
 <model:ioSpecification>
 <model:dataInput id="Check_Availability_input" itemSubjectRef="item02"/>
 <model:dataOutput id="Check_Availability_output" itemSubjectRef="item03"/>
<!-- dataInput and dataOutput point to same itemDefinition as the service interface inMessage-->
 <model:inputSet>
 <model:dataInputRefs>Check_Availability_input</model:dataInputRefs>
 </model:inputSet>
 <model:outputSet>
 <model:dataOutputRefs>Check_Availability_output</model:dataOutputRefs>
 </model:outputSet>
 </model:ioSpecification>
<!-- Map dataObject to dataInput-->
 <model:dataInputAssociation>
 <model:sourceRef>xmlRequest</model:sourceRef>
 <model:targetRef>Check_Availability_input</model:targetRef>
 <model:assignment>
 <model:from>"trainingRegistration"</model:from>
 <model:to>getDataInput('Check_Availability_input')/n1:database
 </model:to>
 </model:assignment>
 <model:assignment>
 <model:from>"root"</model:from>
 <model:to>getDataInput('Check_Availability_input')/n1:username
 </model:to>
 </model:assignment>
 <model:assignment>
 <model:from>"password"</model:from>
 <model:to>getDataInput('Check_Availability_input')/n1:password
 </model:to>
 </model:assignment>
 <model:assignment>
 <model:from>"localhost"</model:from>
 <model:to>getDataInput('Check_Availability_input')/n1:hostname
 </model:to>
 </model:assignment>
 <model:assignment>
 <model:from>"3306"</model:from>
 <model:to>getDataInput('Check_Availability_input')/n1:port</model:to>

 Chapter 23. Executable BPMN in Practice | 251

 </model:assignment>
 <model:assignment>
 <model:from>’select courseId, courseDate, courseCost from courses
where courseId='${providedscripts.BonitaXML.evaluateXPathOnVariable(xmlRequest,
"/Request/@courseId")}'</model:from>
 <model:to>getDataInput('Check_Availability_input')/n1:query
 </model:to>
 </model:assignment>
 </model:dataInputAssociation>
 <!-- Map connector output to variables-->
 <model:dataOutputAssociation>
 <model:sourceRef>Check_Availability_output</model:sourceRef>
 <model:targetRef>available</model:targetRef>
 <model:assignment>
 <model:from>!rowSet.getValues().isEmpty()</model:from>
 <model:to>getDataObject('available')</model:to>
 </model:assignment>
 <model:assignment>
 <model:from xsi:type="model:tFormalExpression"
 language="http://groovy.codehaus.org/"
 evaluatesToTypeRef="xsd:float"><![CDATA[
 List<List<Object>> courses = rowSet.getValues();
 if(courses!=null &&!courses.isEmpty()) {
 course = courses.get(0);
 return course.get(2);
 }
 return 0;]]></model:from>
 <model:to>getDataObject('courseCost')</model:to>
 </model:assignment>
 </model:dataOutputAssociation>

</model:serviceTask>
Figure 23-8. BOS serviceTask serialization for MySQL connector.

Branching at the Gateway
The value of the Boolean variable available, set by the database lookup, determines the flow at
the XOR gateway. In BOS as in BPMN 2.0, the gate conditions are properties of the outgoing
sequence flows, not of the gateway itself. Configuration of the path marked yes in Figure 23-2
is illustrated in Figure 23-9. In the Condition field, an expression builder lets the developer
select from existing process variables for use in a Groovy expression or a decision table. In
this case, the condition is simply available, i.e. if the value of this variable is true, then the yes
path is enabled. The BPMN 2.0 XML for the gateway and gate conditions is shown in Figure
23-10.

252 | Chapter 23. Executable BPMN in Practice

Figure 23-9. Defining a sequence flow condition in BOS. Source: BonitaSoft

<model:exclusiveGateway id="Available_" name="Available?"/>
<model:sequenceFlow id="yes" name="yes" sourceRef="Available_"

targetRef="Calculate_invoice_amount">
<model:conditionExpression xsi:type="model:tFormalExpression"

evaluatesToTypeRef="xsd:boolean">
 ${available}
 </model:conditionExpression>
</model:sequenceFlow>
<model:sequenceFlow id="no" name="no" sourceRef="Available_"

targetRef="Contact_customer_re_alternatives">
 <model:conditionExpression xsi:type="model:tFormalExpression"

evaluatesToTypeRef="xsd:boolean">
 ${!available}
 </model:conditionExpression>
</model:sequenceFlow>

Figure 23-10. Serialization of gateway and gate conditions

Script Task – Calculating the Invoice Amount
Simple calculations are typically performed in scriptTask elements. Here we need to calculate
the invoice amount based on the number of students (from xmlRequest) times courseCost (from
the database lookup). We need to pass those data objects to the dataInput of the scriptTask
using dataInputAssociation. The script language Groovy is indicated by the scriptFormat MIME
type. The BPMN 2.0 XML is shown below:

<model:scriptTask id="Calculate_invoice_amount" name="Calculate invoice amount"
scriptFormat="text/x-groovy">
 <model:ioSpecification>
 <model:dataInput id="Calculate_invoice_amount_input"
itemSubjectRef="item01"/>
 <model:dataOutput id="Calculate_invoice_amount_output"
itemSubjectRef="item06"/>
 <model:inputSet>
 <model:dataInputRefs>Calculate_invoice_amount_input
 </model:dataInputRefs>
 </model:inputSet>

 Chapter 23. Executable BPMN in Practice | 253

 <model:outputSet>
 <model:datalOutputRefs>Calculate_invoice_amount_output
 </model:dataOutputRefs>
 </model:outputSet>
 </model:ioSpecification>
 <model:dataInputAssociation>
 <model:sourceRef>xmlRequest</model:sourceRef>
 <model:targetRef>Calculate_invoice_amount_input</model:targetRef>
 </model:dataInputAssociation>
 <model:dataOutputAssociation>
 <model:sourceRef>Calculate_invoice_amount_output
 </model:sourceRef>
 <model:targetRef>invoiceAmount</model:targetRef>
 </model:dataOutputAssociation>
 <model:script>${courseCost} *
Integer.valueOf(providedscripts.BonitaXML.evaluateXPathOnVariable(xmlRequest,
"/Request/@numStudents"))</model:script>
</model:scriptTask>

Figure 23-11. Serialization of the script task.

Service Task – Email Connector
With the calculated invoice amount, the invoice is sent in an email. In a real process, a
connector would request a billing system to generate and send the invoice, but in this simple
example we illustrate the use of an email adapter. In non-executable BPMN, we model
communication to the customer as a message, but executable BPMN often restricts a BPMN
message to mean a system-to-system message. That is the case here. We don’t use a sendTask,
but instead a serviceTask implemented by a Bonita Email Connector. In the BPMN XML there
is no message element for the email, but there is one for the connector input, as required by the
BPMN metamodel.

Figure 23-12 shows the schema for the Email Connector from the Connectors.xsd file. Figure
23-13 and Figure 23-14 illustrate the configuration of the connector in BOS. Figure 23-15
shows the XML serialization of the serviceTask using this connector. Note there is no output
for this connector, and consequently no dataOutput for the serviceTask. (The BPMN 2.0 XSD
still demands an outputSet element, empty in this case.

A connector like this with many input parameters generates many lines of BPMN 2.0 XML.
Fortunately, the process designer doesn’t need to worry about that, as it is all generated
automatically by the tool on BPMN export.

254 | Chapter 23. Executable BPMN in Practice

Figure 23-12. Bonita Connectors.xsd schema for Email connector.

Figure 23-13. Email Connector configuration wizard, screen 1. Source: BonitaSoft

 Chapter 23. Executable BPMN in Practice | 255

Figure 23-14. Email Connector configuration wizard, screen 2. Source: BonitaSoft

 <model:serviceTask id="Send_invoice" name="Send invoice" implementation="BonitaConnector"
operationRef="execEmail">

 <!--this service uses email connector-->
 <model:ioSpecification>
 <model:dataInput id="Send_invoice_input" itemSubjectRef="item07"/>
 <model:inputSet>
 <model:dataInputRefs>Send_invoice_input</model:dataInputRefs>
 </model:inputSet>
 <model:outputSet/>
 </model:ioSpecification>
 <model:dataInputAssociation>
 <model:sourceRef>xmlRequest</model:sourceRef>
 <model:sourceRef>invoiceAmount</model:sourceRef>
 <model:targetRef>Send_invoice_input</model:targetRef>
 <model:assignment>
 <model:from>"smtp.free.fr"</model:from>
 <model:to>getDataInput('Send_invoice_input')/n1:smtpHost</model:to>
 </model:assignment>
 <model:assignment>
 <model:from>"25"</model:from>
 <model:to>getDataInput('Send_invoice_input')/n1:smtpPort</model:to>
 </model:assignment>
 <model:assignment>
 <model:from>"bruce@brsilver.com"</model:from>
 <model:to>getDataInput('Send_invoice_input')/n1:username</model:to>
 </model:assignment>
 <model:assignment>
 <model:from>"password"</model:from>
 <model:to>getDataInput('Send_invoice_input')/n1:password</model:to>
 </model:assignment>

256 | Chapter 23. Executable BPMN in Practice

 <model:assignment>
 <model:from>"bruce@brsilver.com"</model:from>
 <model:to>getDataInput('Send_invoice_input')/n1:from</model:to>
 </model:assignment>
 <model:assignment>
 <model:from>${providedscripts.BonitaXML.evaluateXPathOnVariable(xmlRequest,

"/Request/@email")}</model:from>
 <model:to>getDataInput('Send_invoice_input')/n1:to</model:to>
 </model:assignment>
 <model:assignment>
 <model:from>"Your registration for training"</model:from>
 <model:to>getDataInput('Send_invoice_input')/n1:subject</model:to>
 </model:assignment>
 <model:assignment>
 <model:from><![CDATA[
 Hello
${providedscripts.BonitaXML.evaluateXPathOnVariable(xmlRequest, "/Request/@requesterName")}
 <hr>
 Here is the amount of the invoice: ${invoiceAmount}
]]></model:from>
 <model:to>getDataInput('Send_invoice_input')/n1:message</model:to>
 </model:assignment>
 </model:dataInputAssociation>
 </model:serviceTask>

Figure 23-15. Serialization of serviceTask with Email Connector

Timer Boundary Event
The last part of this example concerns the timeout on waiting for payment notification,
modeled as a message from an external payment service provider. Normally we would
model this in BPMN as an event gateway or a Timer boundary event on a receive task, but the
current version of BOS does not support those. It does support Timer boundary events on a
call activity, so our example models it that way. Figure 23-16 shows the dialog for setting the
timeout value.

Figure 23-16. Timer event configuration wizard in BOS. Source: BonitaSoft

 Chapter 23. Executable BPMN in Practice | 257

In this case, the timeout is a date (or dateTime) value calculated from the courseDate in the
xmlRequest variable. The Groovy script expression calculating this is shown in the BPMN 2.0
XML below:

<model:boundaryEvent id="_1_day_before_class" name="1 day before class"
attachedToRef="Receive_payment_advice">

 <model:timerEventDefinition>
 <model:timeDate
 xsi:type="model:tFormalExpression" evaluatesToTypeRef="xsd:timeDate">
<![CDATA[
import java.text.SimpleDateFormat;
import org.ow2.bonita.util.DateUtil;
String stringDateStart = ((String)providedscripts.BonitaXML.evaluateXPathOnVariable(xmlRequest,
"/Request/@courseDate"));
Date date = DateUtil.parseDate(stringDateStart);
Calendar calendar = Calendar.getInstance();
calendar.setTime(date);
calendar.add(Calendar.DATE, -1);
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ssz");
String stringDate = sdf.format(calendar.getTime());
String result = stringDate.substring(0, 19) + stringDate.substring(22, stringDate.length());
return result;
]]>
 </model:timeDate>

</model:timerEventDefinition>
</model:boundaryEvent>

Figure 23-17. Serialization of Timer boundary event with calculated timeout value

259

CHAPTER 24

24. Aligning Executable Design
with BPMN Method and Style

When I began writing this book, I was hoping to describe a methodology that starts from a
non-executable Level 2 model created using Method and Style principles and leads to a fully
executable BPMN 2.0 model, and illustrate that methodology using real tools. Ideally, the
Level 2 model, conforming to the BPMN-I profile, could be exported from a tool like Process
Modeler for Visio from itp commerce and imported into a BPMS like Bonita Open Solution,
where the execution-related details would be added.

Unfortunately, the tools are not quite ready to do that yet. I think we are less than a year
away. But we can still talk about what it would mean to align executable process design with
BPMN Method and Style, and what such a methodology would include.

Recall that BPMN Method and Style is about exposing the process logic clearly in the diagram
using nothing but shapes and labels, while executable BPMN is all about defining and
mapping process data. Aligning executable design with Method and Style implies a specific
connection between the shapes and labels in the diagram and the variables, messages, data
inputs, data outputs, and mappings in the executable model. A “methodology” would
include cookbook procedures for creating those elements based on specific shapes and labels
in the non-executable diagram. But actually, I want the executable design tool do that
automatically on import. So consider this chapter my “guidance” – more accurately, “wish
list” – for architects of executable process design tools.

End State Variables
The notion of end states in a process or subprocess is central to Method and Style. The end
states of a subprocess are often connected to branching conditions in a gateway following the
subprocess. Style rule validation ensures that the end states are properly labeled in the
diagram and that the gateway labeling is consistent with it. In an executable model, those

260 | Index

same conditions are implemented as expressions of process variables (dataObjects), using
XPATH, UEL, Groovy, or some other expression language.

The executable model thus requires an end state variable for each subprocess with multiple end
states, with enumerated string values matching the labels of the end events. In the XML, that
means creating a dataObject in the parent process level, the one that includes the subProcess
and exclusiveGateway elements. Each end event defines a dataOutput containing the string
value of its label, and a dataOutputAssociation mapping that value to the end state variable.

What about a task followed by a gateway (or conditional sequence flow)? You could do
something similar here as well. Some tools, like Oracle BPM11g, already require enumerated
end states of a userTask, selected by the task performer through the task user interface, and
then tested by a gateway. I would like any task followed by an exclusive or inclusive gateway
to define an end state variable (dataObject) with enumerated values consistent with the gate
labels on the gateway. For a userTask or scriptTask, where the process designer defines the
task implementation, the task dataOutput would typically point to the same itemDefinition as
the dataObject, making the dataOutputAssociation mapping simple. For a serviceTask, with a
predefined interface, the process designer would need to define a mapping of the dataOutput
to the end state variable in the dataOutputAssociation.

Gateway Conditions
With end state variables, the conditions on most gateway outputs can be generated
automatically in the executable design. For an exclusive gateway labeled as a question with
gates yes and no, the conditionExpression for the yes path takes the form

<conditionExpression>

getDataObject(‘[endStateVarId]’) = “[gatewayLabel without ‘?’]”
</conditionExpression>

Messages
Message flows also play an important role in Method and Style. Even if the executable design
tool does not display message flows, the message elements they represent are important in the
model. Most of the message flows in a Level 2 diagram connect a process activity or Message
event to a black-box pool. Modelers may attach a Message shape to the message flow, but in
the book I recommend labeling the message flow directly. Here we’ll assume the message
flow has a label but not attached Message shape. Style rule validation ensures that all process
nodes that send or receive messages have attached message flows and that all message flows
are properly labeled.

In the executable BPMN, we need a message element for each message flow, unless it has the
same name (label) as another message flow in the model. The name of the message should
match the label of the message flow. We will assume that two message flows with the same
label represent the same message. For example, Method and Style says that a message flow
attached to a collapsed subprocess in the parent-level diagram should be replicated in the

 Index | 261

child-level diagram with matching label. In this case, both messageFlow elements in the XML
will have messageRef pointing to the same message. Also, the messageRef of an event or task
connected to the message flow should point to the same message. The executable design tool
should generate each required message element and all the messageRef pointers to it
automatically upon import.

Errors
In Method and Style we allow Error events to stand for any type of internally generated
exception, whether that is a business exception or a technical exception. Some BPMSs may
reserve Error events for technical exceptions and require gateways to handle business
exceptions. Here we assume that the non-executable modeling tool and executable design
tool follow the same convention.

In the executable BPMN, an errorEventDefinition points to a reusable error element containing
an errorCode string. If the infrastructure provides more details about the error, a structureRef is
available to define the error information structure. Aligning Method and Style with
executable design means that on import, the executable design tool should automatically
create an error element with errorCode value matching the Error event label in the diagram,
and point to it from errorEventDefinition. (If the BPMS supports a pre-defined list of possible
errorCode values, the user could be prompted to select the best one for each Error event.)

Signal and Escalation events, if supported, could be handled in a similar way.

Obviously, no BPM Suites work this way today, but I believe that a future BPMS that
generated these elements automatically (not just in the XML but in the native object model as
well) would be welcomed by many BPMN modelers looking to convert their Method and
Style Level 2 models quickly and easily to executable processes. There is still plenty of work
to do in the executable design environment – designing the task user interfaces, service
implementations and parameter mappings, and performance monitoring – but if the BPMS
can save time by automatically generating elements that the BPMN diagram implicitly
requires, it should do so.

263

Index

Abstract task 34, 168, 169
activity .. vi, viii, ix, 4, 7, 8, 9, 10, 11, 12, 13, 14,

15, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 48, 49,
50, 54, 55, 56, 57, 59, 60, 62, 63, 64, 67, 70,
71, 72, 73, 75, 79, 80, 82, 84, 87, 90, 91, 92,
93, 94, 95, 96, 102, 104, 105, 107, 108, 113,
114, 115, 117, 118, 119, 120, 123, 124, 126,
128, 129, 130, 131, 132, 133, 134, 135, 136,
137, 138, 139, 149, 150, 156, 162, 167, 168,
169, 170, 175, 176, 178, 182, 186, 188, 202,
205, 206, 207, 209, 210, 219, 223, 235, 245,
260

ad-hoc subprocess 36, 37, 42, 169, 188, 189,
190, 203

Analytic subclass vi, vii, ix, x, xii, 16, 37, 89,
91, 107, 128, 136, 153, 154, 155, 156, 158,
160, 161, 162, 167, 168, 169, 170, 172, 173,
174, 178, 179, 181, 199, 200, 201, 202, 203,
206, 207, 208, 209, 211, 216, 220

AND-join ... 25, 41, 134
AND-split .. 25, 41
annotation ... 49
architecture vi, viii, ix, 6, 7, 10, 11, 12, 244, 259
artifact 8, 49, 51, 151, 160, 178, 210, 211, 229
asynchronous communications 99, 231
batch .. 119, 120
black-box pool 25, 26, 27, 28, 29, 46, 47, 63, 67,

71, 72, 74, 82, 84, 95, 102, 120, 137, 161,
165, 198, 204, 210, 260

BonitaSoft .. ix, xii, 239, 242, 243, 244, 245, 246,
247, 248, 249, 252, 253, 254, 255, 256, 259

boundary event ... xii, 90, 91, 92, 93, 94, 95, 96,
99, 100, 101, 102, 103, 104, 105, 106, 107,
108, 109, 110, 111, 112, 115, 118, 125, 127,
130, 131, 132, 136, 137, 138, 139, 156, 171,
172, 174, 175, 187, 202, 206, 207, 210, 216,
217, 232, 233, 245, 256, 257

BPEL 6, 24, 25, 111, 153, 215, 229, 244
BPMN 1.x xi, 5, 6, 7, 28, 37, 38, 47, 48, 49, 108,

145, 160, 161, 162, 170, 178, 215, 233
BPMN 2.0 v, vi, vii, viii, ix, x, xi, xii, 4, 5, 7, 9,

13, 15, 16, 27, 28, 33, 34, 35, 37, 38, 39, 42,
43, 44, 46, 47, 48, 49, 55, 69, 70, 71, 74, 78,
81, 82, 87, 88, 89, 91, 95, 96, 99, 107, 108,
111, 112, 114, 128, 135, 141, 145, 148, 149,
150, 151, 153, 154, 158, 159, 160, 161, 163,
166, 170, 175, 177, 178, 182, 185, 187, 188,
199, 200, 201, 202, 203, 208, 215, 216, 219,
220, 221, 223, 224, 225, 226, 229, 230, 231,
233, 239, 240, 241, 243, 244, 245, 246, 249,
250, 251, 252, 253, 257, 259

BPMN Level 1 . vi, vii, viii, x, xi, xii, 15, 16, 17,
31, 33, 34, 36, 37, 39, 40, 42, 43, 44, 45, 49,
50, 53, 69, 71, 77, 80, 82, 87, 89, 105, 106,
154, 168, 200

BPMN Level 2 . vi, vii, viii, ix, x, xii, 15, 16, 34,
36, 37, 39, 40, 43, 46, 53, 64, 77, 85, 87, 89,
91, 95, 107, 111, 128, 129, 135, 136, 137,
138, 139, 154, 155, 168, 181, 199, 200, 259,
260, 261

BPMN Level 3 ... 15, 39
BPMNDI 148, 149, 158, 187, 188, 189, 191, 192,

193, 197, 198, 200, 205

264 | Index

BPMNDiagram 157, 160, 188, 189, 190, 191,
192, 193, 197, 203

BPMNEdge 188, 190, 191, 193, 202, 212
bpmnElement 149, 161, 187, 188, 189, 190,

191, 193, 197, 202, 203, 204, 205, 210, 211,
212

BPMN-I v, vii, viii, ix, x, 199, 200, 201, 202,
203, 204, 205, 206, 207, 208, 209, 211, 212,
259

BPMNPlane .. 188, 189, 190, 191, 193, 197, 202,
203, 210, 211

BPMNShape.. 188, 190, 191, 193, 202, 203, 204,
205, 211, 212

Business rule task 34, 35, 169, 232
call activity 33, 38, 39, 79, 81, 150, 154, 160,

162, 165, 166, 168, 170, 186, 188, 189, 190,
202, 203, 205, 206, 212, 216, 245, 256

Call Activity .. 38
Cancel event14, 89, 103, 131, 132, 133, 134,

138, 173, 175, 176
collaboration4, 25, 26, 27, 28, 47, 48, 63, 66,

117, 145, 148, 149, 153, 159, 160, 161, 164,
165, 179, 189, 193, 197, 201, 203, 204, 210,
211, 217, 221, 229, 230

collapsed subprocess 21, 23, 24, 35, 37, 38, 54,
55, 62, 64, 67, 77, 81, 108, 111, 140, 170,
188, 190, 197, 260

Common Executable subclass 16, 153, 156,
216, 217, 219, 225, 226

compensating activity 130, 131, 132, 133
compensation . 89, 130, 131, 132, 133, 134, 136,

137, 138, 168, 206
complex gateway 127, 128, 172, 176
Conditional event 110, 139, 156, 173, 174, 175,

207, 208
conditional sequence flow ix, 124, 125, 127,

137, 176, 260
data association ... 33, 49, 50, 51, 168, 173, 174,

181, 182, 183, 184, 185, 186, 187, 211, 212,
216, 219, 221, 223, 224, 225, 226, 230, 236,
239, 241, 247, 250, 252, 255, 260

data input 39, 49, 50, 174, 181, 182, 183, 184,
185, 186, 211, 216, 217, 219, 221, 223, 224,
225, 226, 230, 231, 232, 233, 236, 237, 239,
243, 244, 250, 252, 255, 259

data object 49, 50, 78, 84, 95, 98, 154, 167, 178,
181, 182, 183, 184, 185, 191, 205, 211, 216,
219, 220, 221, 223, 224, 225, 230, 243, 246,
247, 250, 252, 260

data output 50, 173, 181, 182, 183, 184, 185,
186, 211, 216, 217, 219, 221, 223, 226, 230,
231, 232, 233, 236, 244, 247, 250, 252, 253,
259, 260

data store xi, xii, 6, 49, 50, 73, 84, 118, 119,
120, 149, 154, 159, 167, 181, 183, 184, 211,
217, 220

default ... 124, 125, 137, 148, 156, 157, 158, 162,
163, 165, 168, 169, 170, 172, 173, 175, 176,
177, 179, 182, 190, 202, 206, 209, 210, 216,
220, 222, 224, 230, 241

definitions element .. viii, 5, 9, 16, 49, 147, 149,
150, 157, 158, 159, 160, 163, 164, 165, 169,
171, 173, 177, 183, 191, 193, 201, 215, 219,
220, 221, 222, 224, 240, 245

Descriptive subclass vi, vii, ix, x, xii, 16, 33,
37, 50, 153, 154, 155, 156, 160, 168, 169,
200, 216, 217

Discriminator pattern 127, 128
end event 9, 19, 20, 21, 23, 24, 25, 27, 28, 31,

33, 35, 36, 41, 44, 45, 46, 56, 61, 62, 63, 67,
75, 76, 77, 79, 82, 83, 89, 93, 96, 102, 104,
105, 106, 108, 109, 112, 126, 127, 131, 132,
134, 136, 137, 139, 140, 154, 156, 163, 164,
165, 171, 172, 175, 176, 183, 191, 193, 205,
206, 207, 208, 210, 216, 217, 221, 245, 260

end state viii, 4, 9, 11, 12, 13, 14, 20, 21, 23, 27,
31, 33, 37, 40, 41, 44, 45, 53, 55, 56, 57, 58,
59, 60, 61, 62, 67, 70, 71, 75, 76, 77, 79, 96,
97, 101, 104, 105, 106, 107, 108, 139, 140,
259, 260

Error event ix, 15, 89, 90, 91, 96, 104, 105, 106,
107, 108, 109, 111, 112, 131, 132, 136, 137,
138, 139, 156, 171, 173, 175, 207, 208, 216,
217, 219, 232, 233, 261

Escalation event xii, 89, 107, 108, 109, 112,
138, 139, 156, 173, 174, 175, 207, 208, 219,
232, 233, 261

event .. vi, viii, ix, xi, xii, 4, 6, 11, 12, 13, 15, 19,
20, 21, 22, 23, 24, 25, 27, 28, 33, 34, 36, 38,
41, 42, 43, 44, 45, 46, 49, 50, 56, 57, 63, 71,

 Index | 265

75, 76, 77, 80, 82, 84, 87, 88, 89, 90, 91, 92,
93, 95, 96, 99, 100, 101, 102, 103, 104, 105,
106, 107, 108, 109, 110, 111, 112, 114, 115,
118, 119, 123, 125, 127, 130, 131, 132, 134,
135, 136, 137, 138, 139, 140, 149, 156, 159,
165, 167, 170, 173, 174, 175, 176, 181, 182,
183, 186, 202, 205, 206, 207, 219, 223, 230,
232, 233, 245, 256, 260, 261

event gateway 100, 101, 102, 109, 118, 123,
125, 134, 137, 138, 156, 173, 206, 209, 216,
245, 256

event subprocess . 36, 80, 89, 90, 104, 111, 112,
118, 131, 132, 136, 137, 170, 173, 206, 207

event, interrupting 131, 132
event, non-interrupting xi, xii, 6, 90, 91, 92,

93, 102, 103, 104, 107, 108, 111, 112, 127,
131, 138, 173, 175, 207, 233

exception flow 90, 91, 92, 93, 102, 103, 104,
105, 107, 108, 111, 112, 125, 127, 131, 132,
134

exceptions .. 4, 13, 14, 20, 24, 130, 131, 132, 134
exclusive (XOR) gateway 20, 25, 40, 41, 71, 77,

82, 101, 102, 104, 123, 124, 125, 126, 128,
139, 154, 156, 167, 171, 172, 177, 178, 190,
206, 209, 210, 212, 216, 242, 251, 252, 260

expanded subprocess . x, 21, 22, 23, 35, 54, 62,
71, 81, 83, 140, 155, 170, 178, 186, 187, 188,
190, 207

exporter . 157, 158, 163, 164, 165, 171, 183, 191,
193, 201, 221

expression language ... 157, 158, 176, 177, 224,
226, 242, 243, 260

extensionElements 159, 160, 169, 202, 204,
229, 232, 235

flowElement .. 154, 167, 176, 179, 182, 183, 210,
216

flowNode 167, 172, 173, 176, 182, 202, 204,
205, 206, 209

gateway vi, viii, ix, 13, 15, 16, 20, 21, 23, 24,
25, 39, 40, 41, 42, 45, 46, 49, 55, 56, 60, 61,
62, 67, 70, 76, 77, 82, 84, 92, 93, 94, 100,
101, 105, 106, 107, 108, 113, 123, 124, 125,
126, 127, 128, 134, 135, 136, 137, 138, 140,
158, 167, 172, 173, 176, 177, 178, 190, 202,

205, 206, 209, 210, 241, 245, 251, 252, 259,
260, 261

global task ... xii, 39, 79, 149, 159, 169, 170, 206
Groovy 35, 226, 227, 241, 242, 243, 249, 251,

252, 257, 260
happy path .. 19, 20, 61
hierarchical style .. ix, x, xi, 5, 10, 22, 23, 37, 38,

40, 48, 53, 54, 55, 60, 62, 64, 71, 75, 81, 82,
110, 170, 188, 193, 197, 200

high-level map vi, 55, 59, 60, 62, 67
id 16, 74, 149, 150, 151, 154, 155, 156, 157,

158, 161, 162, 163, 164, 165, 166, 171, 175,
177, 178, 179, 182, 183, 188, 189, 191, 193,
197, 202, 203, 204, 208, 211, 212, 216, 217,
220, 221, 222, 224, 225, 226, 229, 230, 231,
232, 236, 237, 240, 241, 243, 246, 247, 248,
250, 252, 255, 257

IDREF 150, 151, 168, 172, 176, 201, 202
import xi, xii, 16, 51, 148, 149, 150, 151, 155,

157, 159, 165, 166, 187, 188, 200, 201, 216,
217, 219, 220, 221, 222, 240, 241, 246, 247,
257, 259, 261

importType 159, 165, 166, 221, 241, 247
inclusive (OR) gateway 108, 123, 124, 126,

127, 139, 156, 172, 176, 206, 209, 210, 260
inline expansion x, 21, 23, 36, 54, 93, 112, 170,

188
interface 39, 96, 169, 185, 215, 219, 229, 230,

235, 244, 249, 250, 260
intermediate event 89, 90, 91, 96, 99, 100, 104,

108, 109, 110, 111, 132, 137, 138, 139, 156,
173, 174, 175, 206, 207, 208, 209, 210, 216

ioSpecification 168, 182, 183, 184, 216, 217,
219, 221, 224, 225, 226, 230, 235, 236, 250,
252, 255

item definition 95, 182, 183, 184, 217, 219, 220,
221, 222, 224, 230, 231, 232, 233, 236, 239,
240, 241, 246, 247, 249, 250, 260

itemSubjectRef 182, 216, 217, 220, 221, 224,
225, 226, 230, 232, 236, 246, 247, 250, 252,
255

itp commerce .. xi, xii, 69, 70, 81, 140, 141, 163,
166, 175, 200, 259

Java 177, 224, 240, 241, 242, 243, 244, 245, 246,
247

266 | Index

join ... 25, 41, 42, 45, 60, 61, 80, 82, 92, 114, 126,
127, 134, 176

lane ... 3, 14, 20, 21, 23, 24, 25, 26, 27, 28, 29, 33,
46, 47, 48, 49, 62, 73, 96, 97, 98, 154, 178,
190, 198, 204, 205, 212, 217

Link event . 22, 54, 110, 111, 136, 137, 138, 139,
156, 173, 174, 175, 203, 206, 208

loop ix, 24, 43, 113, 114, 115, 116, 117, 118,
168, 169, 176, 223

Manual task 34, 169, 235
mapping 35, 49, 183, 185, 219, 223, 224, 225,

226, 227, 239, 240, 248, 249, 259, 260
merge ... ix, 15, 42, 45, 60, 82, 96, 104, 123, 125,

126, 127, 172
message .. viii, ix, x, 4, 13, 15, 26, 27, 28, 29, 31,

33, 34, 36, 38, 42, 43, 44, 45, 46, 47, 48, 49,
60, 62, 63, 64, 65, 66, 67, 71, 72, 75, 77, 78,
79, 83, 84, 89, 90, 91, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 108, 109, 110, 111, 115,
117, 118, 119, 120, 134, 137, 138, 139, 140,
151, 153, 156, 159, 160, 161, 162, 165, 169,
170, 178, 191, 207, 208, 209, 210, 212, 216,
217, 219, 220, 221, 222, 229, 230, 231, 232,
233, 244, 245, 246, 247, 248, 249, 250, 253,
255, 256, 260

Message event 27, 28, 29, 36, 42, 43, 44, 45, 46,
60, 72, 75, 89, 90, 96, 98, 99, 102, 103, 104,
117, 134, 139, 140, 156, 170

message flow x, 4, 26, 27, 28, 29, 33, 43, 45, 46,
47, 48, 49, 62, 63, 64, 65, 66, 67, 71, 72, 75,
77, 78, 79, 83, 84, 89, 95, 96, 98, 99, 100,
102, 103, 109, 137, 138, 140, 151, 154, 156,
160, 161, 162, 164, 165, 178, 191, 193, 202,
204, 207, 208, 209, 210, 212, 217,룀220, 221,
230, 260

messageRef ... 156, 162, 169, 202, 210, 217, 220,
221, 225, 231, 232, 248, 261

metamodel ...vii, ix, xi, 3, 5, 7, 9, 46, 50, 71, 74,
81, 95, 99, 105, 135, 136, 145, 146, 149, 160,
182, 185, 187, 199, 216, 220, 229, 235, 244,
253

method .. 23, 27
method and style .. v, vi, vii, viii, ix, xii, 4, 5, 9,

10, 16, 17, 20, 21, 38, 44, 46, 60, 63, 64, 74,
75, 81, 85, 99, 105, 115, 117, 139, 154, 161,

162, 170, 173, 176, 188, 200, 205, 232, 259,
260, 261

multi-instance . ix, 114, 115, 116, 117, 133, 156,
161, 168, 169, 176, 182

multi-merge .. 126, 128
Multiple event................................. 44, 136, 174
Multiple-Parallel event .. 43, 138, 173, 174, 175
namespace 148, 150, 157, 158, 159, 160, 163,

165, 166, 188, 193, 197, 201, 202, 220, 221,
222, 229, 240, 241, 246, 247

normal flow 90, 91, 92, 102, 103, 104, 107, 108,
112, 127

Object Management Group (OMG) v, vii, viii,
xii, 3, 5, 6, 7, 15, 53, 135, 136, 145, 146, 177,
185, 187, 199, 223, 224, 225, 226, 227, 230,
231, 236, 237, 240, 243

orchestration 13, 14, 46, 162
OR-split.. 123
parallel (AND) gateway 25, 41, 42, 61, 82, 123,

126, 127, 154, 172, 209, 216
parallel box 36, 37, 42, 46, 80, 140, 206
parallel split .. 25, 41, 60, 80, 123, 126, 127, 137
participant ... ix, 26, 29, 47, 74, 75, 81, 117, 139,

154, 160, 161, 162, 164, 165, 190, 193, 198,
202, 204, 205, 210, 212, 221, 229

patterns xi, 4, 15, 28, 105, 109, 127, 128
pool .. ix, x, 20, 23, 24, 26, 27, 28, 29, 30, 33, 45,

46, 47, 48, 62, 63, 66, 71, 72, 73, 74, 75, 81,
83, 84, 108, 110, 117, 118, 119, 120, 121,
137, 138, 139, 153, 154, 161, 162, 165, 189,
190, 198, 203, 204, 205, 212, 217

private process .. 28
process level 5, 22, 23, 25, 37, 40, 41, 44, 45, 46,

48, 49, 50, 54, 62, 71, 75, 79, 89, 109, 110,
111, 112, 136, 137, 140, 170, 171, 172, 178,
181, 185, 187, 188, 203, 205, 207, 208, 209,
219, 260

Process Modeling Conformance ..vi, vii, ix, x,
xii, 15, 16, 33, 153, 154, 216

processRef 154, 161, 162, 164, 165, 193, 198,
202, 204, 210, 221

property 3, 10, 108, 168, 173, 174, 223, 236, 243
public process ... 28

 Index | 267

QName .. 150, 151, 159, 161, 162, 167, 169, 170,
174, 175, 177, 179, 188, 189, 190, 191, 200,
202, 219, 220, 222, 230, 232

Receive task 34, 46, 99, 100, 101, 138, 140, 156,
168, 169, 170, 206, 209, 220, 230, 231, 232

resolution 189, 190, 191, 193, 197, 203
rootElement 149, 157, 159
schemaLocation ... 158, 159, 163, 164, 165, 171,

183, 191, 193, 221, 246
Script task34, 35, 169, 219, 226, 252, 260
Send task ... 34, 95, 96, 97, 98, 99, 140, 156, 168,

169, 170, 206, 220, 225, 231, 232, 253
sequence flow . 13, 20, 21, 24, 25, 26, 33, 34, 35,

36, 39, 40, 41, 42, 45, 46, 49, 50, 60, 61, 70,
71, 82, 83, 84, 87, 90, 91, 92, 96, 97, 99, 102,
104, 110, 111, 113, 123, 124, 125, 126, 127,
128, 131, 135, 136, 137, 138, 150, 154, 156,
163, 164, 165, 167, 168, 171, 172, 174, 176,
177, 178, 183, 187, 191, 193, 205, 206, 207,
208, 209, 210, 212, 216, 221, 231, 242, 243,
251, 252

Service task ... 21, 34, 35, 99, 100, 154, 168, 169,
206, 216, 224, 226, 230, 231, 232, 244, 248,
250, 251, 253, 255, 256, 260

Signal event.......89, 95, 108, 109, 110, 114, 118,
119, 138, 139, 156, 219, 232, 233, 261

start event 9, 19, 21, 27, 28, 29, 33, 35, 36, 41,
42, 43, 44, 45, 46, 57, 62, 72, 75, 76, 80, 81,
83, 89, 99, 104, 109, 110, 111, 117, 119, 123,
131, 136, 137, 139, 140, 154, 163, 164, 165,
170, 171, 173, 174, 181, 183, 184, 191, 193,
205, 206, 207, 210, 216, 221, 223, 232, 233,
247, 248

style .. 24
style rule . v, vi, vii, viii, ix, xi, xii, 5, 36, 43, 69,

70, 71, 76, 81, 135, 136, 139, 140, 141
subprocess ...x, 21, 22, 23, 24, 25, 27, 33, 35, 36,

37, 38, 39, 42, 44, 45, 46, 48, 49, 54, 55, 56,
60, 62, 64, 67, 70, 71, 75, 76, 77, 79, 80, 81,
82, 83, 93, 94, 104, 105, 106, 107, 108, 110,
111, 112, 113, 115, 116, 130, 131, 132, 133,
134, 137, 138, 139, 140, 150,룀154, 160, 165,
168, 169, 170, 171, 172, 173, 178, 183, 185,
187, 188, 189, 190, 193, 197, 203, 205, 206,
207, 210, 211, 212, 216, 219, 259, 260

Subprocess 21, 22, 23, 24, 25, 35, 38, 44, 45,
130, 131, 132, 133, 134

synchronous communications 99
targetNamespace ix, 148, 150, 151, 157, 158,

159, 163, 164, 165, 166, 171, 183, 191, 193,
201, 202, 204, 205, 221, 222, 246

task ...vii, viii, ix, xii, 4, 5, 13, 14, 15, 16, 21, 25,
27, 29, 30, 33, 34, 35, 39, 41, 42, 46, 50, 55,
57, 64, 69, 71, 72, 74, 76, 79, 83, 95, 96, 97,
98, 99, 104, 105, 107, 108, 113, 128, 130,
135, 151, 154, 163, 164, 168, 169, 171, 172,
178, 181, 183, 184, 185, 186, 187, 190, 191,
193, 206, 215, 217, 221, 223, 225, 226, 229,
230, 231, 235, 236, 237, 239, 244, 245, 248,
252, 253, 256, 260, 261

Terminate event ... 33, 45, 61, 89, 107, 109, 115,
154, 174, 176, 208, 216, 217

tExpression 176, 177, 233
text annotation ... 51, 71, 96, 113, 114, 128, 154,

178, 179, 182, 204, 205, 210, 211, 216
tFormalExpression 176, 177, 226, 242, 243,

250, 252, 257
throw-catch .. 105, 106, 107, 108, 109, 110, 111,

131, 132, 133, 232
Timer event ix, 15, 33, 36, 43, 76, 89, 90, 91, 92,

93, 94, 95, 99, 100, 101, 111, 112, 118, 119,
138, 139, 154, 156, 173, 174, 175, 187, 207,
208, 216, 217, 233, 256, 257

top-down 5, 38, 54, 55, 56, 64, 76, 77
top-level process .. 23, 27, 30, 31, 37, 38, 39, 42,

44, 48, 49, 53, 54, 55, 59, 60, 61, 62, 64, 65,
66, 67, 71, 75, 80, 81, 82, 99, 111, 118, 119,
150, 157, 173, 186, 188, 189, 190, 193, 197,
201, 203, 210, 211

transactions 58, 60, 74, 129, 130, 131, 132, 133,
134, 169, 188, 189, 190, 203

type language 157, 158, 220
UEL 177, 224, 225, 241, 242, 243, 260
User task 9, 21, 27, 34, 39, 46, 64, 95, 97, 98,

107, 108, 154, 155, 167, 168, 169, 206, 216,
235, 236, 237, 260

validation vii, ix, xi, xii, 69, 70, 71, 77, 82, 135,
136, 140, 141, 148, 150, 199, 200, 201, 202,
259, 260

268 | Index

Visio vi, xi, xii, 55, 63, 66, 69, 81, 110, 140, 163,
164, 165, 171, 183, 188, 189, 191, 192, 193,
203, 221, 259

WSDL .. 6, 96, 159, 169, 216, 219, 220, 221, 222,
229, 230, 244

XSD 135, 136, 146, 147, 148, 149, 150, 151, 154,
155, 157, 158, 159, 161, 163, 164, 165, 167,
169, 171, 174, 175, 176, 177, 182, 183, 184,
185, 187, 188, 189, 190, 191, 193, 199, 201,
202, 203, 208, 219, 220, 221, 222, 223, 224,
230, 232, 233, 236, 239, 240, 245, 246, 247,
249, 250, 252, 253, 254, 257

269

25. About the Author

Bruce Silver is principal at Bruce Silver Associates, provider of consulting and training
services in the area of Business Process Management. He is founder and principal at
BPMessentials, the leading provider of BPMN training and certification. His unique
contributions to BPMN include the Method and Style approach and the BPMN-I Profile for
model interchange. His website BPMS Watch (www.brsilver.com) is well known for reports
and commentary about the latest developments in BPM standards, tools, and products. He
was a member of the technical team that developed the BPMN 2.0 specification in OMG, and
contributed to the BPMN section of OMG’s OCEB BPM certification exam.

Prior to founding Bruce Silver Associates in 1994, he was Vice President in charge of
workflow and document management at the analyst firm BIS Strategic Decisions, which
became Giga (now part of Forrester Research). He has Bachelor and PhD degrees in Physics
from Princeton and MIT, and four US Patents in electronic imaging.

To contact the author, email bruce@brsilver.com.

	Front
	Table of Contents
	Preface
	Chapter 1. Good BPMN, Bad BPMN
	Chapter 2. How Does a Model Mean?
	Chapter 3. BPMN by Example
	Chapter 4. The Level 1 Palette
	Chapter 5. The Method
	Chapter 6. BPMN Style
	Chapter 7. Events
	Chapter 8. Iteration and Instance Alignment
	Chapter 9. Process Splitting and Merging
	Chapter 10. Transactions
	Chapter 11. The Rules of BPMN
	Chapter 12. BPMN Metamodel and Schema
	Chapter 13. Process Modeling Conformance Subclasses
	Chapter 14. BPMN Serialization Basics
	Chapter 15. Serializing Process Elements
	Chapter 16. Serializing Data Flow
	Chapter 17. The BPMNDI Graphical Model
	Chapter 18. BPMN-I
	Chapter 19. What Is Executable BPMN?
	Chapter 20. Variables and Data Mapping
	Chapter 21. Services, Messages, and Events
	Chapter 22. Human Tasks
	Chapter 23. Executable BPMN in Practice
	Chapter 24. Aligning Executable Design with BPMN Method and Style
	Index
	About the Author

		2019-03-04T17:58:18+0000
	Preflight Ticket Signature

